
AD-A99 999 OLAHOMA UNIV NORMAN SCHOOL OF INDUSTRIAL ENGINEERING F/6 9/2

OPTIMUM TESTING PROCEDURES FOR SYSTEM DANOS AND FAULT ISLA--ETCIU)

MAR 81 A A ALY AFOSR-80-0139

UNCLA7SIFIED 81-1 NL

SIMEONSENhhhEEEEEonEE I
EohEEmhhohEshE
EomhEEEEEEEEEEE
EohEEEEmhEEmhE

EEEEE~E~h~zh

MFOSR-1T- 8 1 - 0 4 7.

6 PTIMUM ESTING ,PROCEDURES
FOR SYSTEM DIAGNOSIS
AND FAULT ISOLATION*

by LEVEI
Adel A./Al j

Principal invesigator

i " "JUN 1 01981

j~

5-i-I

School of Industrial Engineering
/ University of Oklahoma
. Norman, Oklahoma 73019

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research was supported in part by the U.S. Air Force
Office of Scienti s ci qlling AFB, Wash., C.D. 20332
under grant numbe 4AFSR-80-0139

THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE AIR FORCE POSITION, UNLESS SO DESIGNATED BY
OTHER AUTHORIZED DOCUMENTS.

*Paper presented at the "International Conference on Production
Engineering, Design and Control," Alexandria, Egypt, December
27-29, 1980.

816 i0 040
- L = -=?N /

i . -...1 i - , < "

SECURITY CLASS~FlCATION or TI4S PAGE no..-. r E.-'.0E)

..... AGE . . .READ 1% SRUC, ,O(iS
SDO N BEFORE COPMPLETI%C FORM

I. AFL PORT %N ER 12 &OVT ACCESSION NO. S RECIPIENT'$ CAI ALOG *.UMI
I
fA OSR. .I 8 1 -0e 0, F7-E~q ¢

4. TI L E (#and S.60it) $- TYPE OF REPORT A PERIOD COVERED

'OPTIMUM TESTING PROCEDURES FOR SYSTEM DIAGNOSIS Final
AND FAULT ISOLATION" 2/1/80 - 1/31/81

6. PERFORMING O010G. REPORT NUMBER

81-1

7. AUTHOR(&) 6. CONTRACT OR GRANT NUMBER(s)

Dr. Adel A. Aly AFOSR-80-0139

SPERFOR;NG ORAJZ.ATION NAME AND ADDRESS tD PROGRAM EL EMENT. PROJECT. TASK
University oIuKCLahOma AREA & WORK UNIT NUMABERS

School of Industrial Engineering
202 W. Boyd, Suite 124
Norman. Okl ahoma 73019

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
March 31, 1981

Air Force Office of Scientific Research1A'J9 13. NUMBER OF PAGES
Building 410, Bolling AFB, Wash. D.C. 20332 92

IA. MONITORING AGENCY NAME & ADDRESS(If different rom ControIling Office) IS. SECURITY CLASS. (of fhis report)

Unclassified
ISO. DECLASSIFICATION/DOWNGRADING

N/A OULE
16. DISTRIBUTION STATEMENT (oi this Reporl)

Approved for public release; distribution unlimi.ted.

17. DISTRIBUTION STATEMENT (of the Abstract entered in Block 20. it diffterent ieom Reporl)

N/A

IB. SUPPLEMENTARY NOTES

Paper presented at .the "International Conference on Production
Engineering, Design and Control," Alexandria, Egypt, December
27-29, 1980.

19. KEY WORDS (Continue on reverse side it necessary and identify by block nuuber)

Fault detection and isolation
Built-in-test
Optimum sequenceof testing
Branch-and Bound

20. ABSTRACT (Contin... on revera. .ide f nwcider' and identify by block number)
Even though a great deal of work has been done in developing models in the

field of designing diagnostic tests for fault isolation in digital systems, there
is still a lack of efficient and fast procedures.

Two approaches to the cost-effective design of fault isolation procedures
were presented here. They were oriented specifically toward built-in-test (BIT)
diagnostic subsystems for modular electronic equipment.

A branch and bound solution approach was used in order to find the optimal
FORM

DD, JAN 73 1473 EDITION OF ' NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (*?.en Data Entered)

20. (cont'd)

sequence of tests to be executed by the BIT to isolate a single malfunctioned

unit among a group of line replaceable units. Computational results were presentid

und discussed. A computer program listing of the solution technique was included

&,a

.7 C

.1
.4

7;

9.,,, .,

siqt CASCA~ ~PCCt~"~£ud

ABSTRACT

Even though a great deal of work has been done in

developing models in the field of designing diagnostic tests

for fault isolation in digital systems, there is still a lack

of efficient and fast procedures.

Two approaches to the cost-effective design of fault

isolation procedures were presented here. They were oriented

specifically toward built-in-test (BIT) diagnostic subsystems

for modular electronic equipment.

A branch and bound solution approach was used in order to

find the optimal sequence of tests to be executed by the BIT to

isolate a single malfunctioned unit among a group of line

replaceable units. Computational results were presented and

discussed. A computer program listing of the solution technique

was included.

AIR FORCE OFrICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMAITTAL TO DDC
This technical rc,;..rt has, be n reviewed and is
approved for publ. release lAW AFR 190-12 (7b).
Distribution is unlimited.
A. D. BLOSE
Techtlical Information offboer

7- , - - -

00

C'.=

TABLE OF CONTENTS -

Page

LIST OF TABLES v

LIST OF FIGURES vi

Chapter

1. INTRODUCTION 1

1.1 Introduction 1

1.2 Statement of the Problem 2

1.3 Determination of States Following a Test 3

2. LITERATURE REVIEW 10

2.1 Primary Isolation 10

2.2 Secondary Isolation 12

2.3 Scope of the Research 13

3. A BRANCH AND BOUND APPROACH 17

3.1 Concept of Branch and Bound Techniques . 17

3.2 Upper and Lower Bounds_ 22
3.2.1 Upper Bound at the First'Node . . 22
3.2.2 A Lower Bound for each Node 23

3.3 The Branching Rules 28

3.4 The Dominance Rules 29

3.5 The Branch and Bound Algorithm 32

3.6 Verification of the Algorithm 37

3.7 The Heuristic Algorithm 39

4. COMPUTATIONAL RESULTS 41

I ,~" ~- FfI~.Gk~iA~i', i4~ .A4-NOI F-1..-' - . . -" .

Chapter

5. SUMMARY AND CONCLUSIONS 47

5.1 Summary...................47

5.2 Conclusions.................47

5.3 Future Work.................48

REFERENCES.........................50

APPENDIX A.........................52

APPENDIX B.........................72

iv

LIST OF TABLES

Table Page

1.1 Example Problem 6

3.1 Dominance i-iles 32

4.1 Computational Results for all Test Problems 42

4.2 A Comparison Between the Results of Branch and
Bound and the Heuristic Algorithms 44

4.3 A Comparison Between the Branch and Bound and
Dynamic Programming Algorithms 46

A.1 Tests Which Could be Used to Reach State S From
State 9 in the 5-LRUs Example 56

A.2 Tests Which Could be Used to Reach State S From
State S in the 6-LRUs Example 63

A.3 Tests Which Could be Used at Node S in the
4-LRUs Example 69

v

LIST OF FIGURES

Figure Page

I.i Sequential Testing Diagram for Example
of 4-LRUs 5

1.2 Two Feasible Testing Diagrams a and b 7

2.1 A Directed Network for a 4-LRUs Example 15

2.2 A Tree Diagram for a 4- LRUs Example 16

3.1 A Modified Search Tree for a 4-LRUs Example 20

3.2 Sequential Testing Diagram Using a Fictious
Node 26

3.3 Search Tree of the Example Problem 38

4.1 A Plot of Computational Times for Selected
Problems 43

4.2 A Plot of the Percentage of Time the Optimal
Solution was Reached Under Two Conditions . . . 45

A.1 A Search Tree for a 5-LRUs Example 53

A.2 A Search Tree for a 5-LRUs Example 54

A.3 A Search Tree for a 6-LRUs Example 60

A.4 A Search Tree for a 6-LRUs Example 61

A.5 A Search Tree for a 4-LRUs Example 68

vi

CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years, interest has grown in the development

and use of automatic devices to test and checkout physical

systems of all types. Most of the attention in this field

has been oriented toward built-in-test (BIT) diagnostic

subsystems for modular military electronic equipment, mainly

in airborne and ground electronic equipment. BIT diagnostics

have the advantage of allowing fewer and less qualified

maintenance personnel and fewer pieces of external test equip-

ment, which are generally quite eypensive.

A primary equipment is composed of modular line

replaceable units (LRUs), all of which operate independently.

Associated with each unit is an a priori probability of being in

failure, and it is assumed that the probabilities of multiple

failures are negligible.

Whenever the equipment malfunctions, a single LRU is

assumed to have failed, and two types of diagnostic tests

should be used for the primary and the secondary isolations.

The primary isolation tests will be automatically executed by

the BIT in order to identify the group of LRUs which contains

I!

- -r - - 7 - £, .-.......-.. . , -. = _

2

the faulty unit. After the execution of the automatic BIT,

secondary isolation will be performed by semi-automatic or

manual means which incur time and extra equipment costs to

locate the single failed unit within a group of LRUs.

1.2 Statement of the Problem

Assume that equipment consists of n mutually exclusive

groups of LRUs. Associated with each LRUi is an a priori

probability pi, which is the probability before any diagnosis

that the malfunction of the equipment is caused by the failure

of LRU. Whenever the equipment fails, the BIT automatically

executes a sequence of primary diagnostic tests to isolate the

group which contains the single faulty LRU.

Each LRU could be either good or bad, therefore a set

of 2n tests is required to constitute a complete set of all

possible binary tests. However, if a test that checks a

subset of LRUs is passed, the test that checks the complement

of this subset must be a failure, and conversely. Therefore,

such a pair of tests is redundant, and in the quest for least-

expected-cost procedures the more expensive of the pair can

be ignored. By this argument the number of possible different

tests which can exist for n LRUs is (2
n- I - 1) after excluding

the two tests which examine all or none of the n LRUs.

Associated with each test, Tk which is included in the

primary diagnostic, there is a known cost, Ck" The total cost

of locating a particular faulty element is the sum of the costs

3

of the tests along the path which leads from the initial state,

in which no LRU is known to be good or bad, to the final

state representing the group containing the faulty unit, plus

the cost of secondary isolation of that group.

The problem is to design minimum-expected-cost test

procedures to be executed by the BIT. These can be described

by tree structures, with nodes and twigs. Each node of a tree

can be interpreted as a state of ambiguity subset. The

ambiguity subset at each node consists of the twigs that are

descendant from the node. The test applied at a node serves

to partition the associated ambiguity subset, thus reducing the

ambiguity. The root node, or full subset, corresponds to a

state of complete ambiguity, while at the twigs, which

correspond to unit subsets and hence where the outcome is

determined, there is no further ambiguity.

1.3 Determination of States Following a Test

The following notation will be used throughout this

research.

Tk: Test k. A test is represented by an (n-bit) number

containing only the binary digits 0 and 1. A 0 is

assigned in position i of a test if LRU. must be good

in order for the test to pass. A 1 is placed in

position i of a test if LRUi is not tested.

S: State of the equipment prior to performing the test Tk.

A state is represented by an (n-bit) number containing

- %e

4

only the binary digits 0 and 1. The n bits in the

designation of a state ocrrespond, sequentially from

left to right, to LRU I, LRU2 . .LRU. A 0 is

assigned in position i of a state if LRUi is known to

be good. A 1 is assigned in position i of a state if

LRU. is not yet tested. In the initial state there are
1

l's in all positions since none of the LRUs have been

tested.

(S,Tk) State of the equipment if test Tk passes. This

state is computed by multiplying S and Tk bit by

bit with no carry.

S(S,Tk): State of the equipment if test Tk fails. This state

is computed by multiplying S and Tk' the complement

of Tk , bit by bit without carry.

n(S): Number of remaining untested LRUs at state S.

Ck: Cost of test Tk'

T(S): Set of all possible tests which could be used at

state S.

T(S,S): Set of all tests which could be used to reach state

S(S,Tk) from state S.

N(S): A node representing state S.

I(S): Set of indices of the n(S) remaining untested LRUs

at node N(S).

4 b(S,S): A branch leading from node N(S) to node N(S).

C(S): Minimum expected cost of a sequence of tests, given

that the current state is S.

-*1 , . . " 7 °

w - . * - -- --. --,*. . --- * *

5

C(S,S): Expected cost of testing branch b(S,S).

Ei: Expected cost for secondary isolation of LRUi.

The basic structure of a sequential testing diagram is

illustrated in Figure 1.1.

0111 Current State S

•Next State Next State
(,10011

Figure 1.1. Sequential testing diagram for example
of 4-LRUs.

" 1? ,.

6

In order to explain how the expected cost of any

sequential test procedure is computed, two feasible solutions

to the example problem defined in Table 1.1 are shown in

Figure 1.2.

TABLE 1.1

EXAMPLE PROBLEM

LRU. 1 2 3 4

Pi .45 .30 .20 .05

E. 6 3 5 1

Tk Binary Designation of Test Ck

T1 1 0 0 0 $1

T2 0 1 0 0 6

T3 0 0 1 0 2

T4 0 0 0 1 7

T5 1 1 0 0 3

T1 0 1 0 5
61

T 1 0 0 1 4

- .-............. .

CD Co
7 D

CD.

CD0

CD u0

4 CD4

C))

CD4

V
'-4

'44

r34

I~ Q

-4 CD CD
(D C)

0Q

-4

CD u

AL'mu

8

Let C1 be the expected cost of the feasible test

procedure (T10 00 , T 11 00 , T 001 0] represented by tree (a) in

Figure 1.2.

C 1= C(111J.)

= C 10 00 + p 1 C(1000) + (P2+P3 +P4) C(0111)

= * C(10
1000 p1 C(1000) + (p2+p3+p4) (10+P+3P

+ (P+*)C(0.l1))

1000 + 1 C(1000) + P2C(0100) + (P2+P3+P4) (C1 O0

(P+P4 P3 *p 4 *
+ + (C 01 + +pC(0010) + - (0001))

0010 P P3+ 4 p3 IP4

= C1 0 0 0 + p1 El + P2 E2 + P3 E-3 + P4 E4

+ (P2+p3+p4) C11 00 + (p3+p4) C0 010

=7.8

Let C 2 be the expected cost of the feasible test

9procedure H(T110 0 , T 10 00), or (T 1100 , T 001 0)] represented by
tree (b) in Figure 1.2

C2 = C(1111)
2*

=C1100 + (P1+P2) C(1100) + (p3+p 4) C(0011)

9

p1 * p2

S(C + - C(1000)+ ---- c(Ol0O))C1100 + (pl+P2 (C1000 pl+P2 +2

P 3 * P 4 *
+ (p 3 +P4)(C 0 0 1 0 + -C(0 0 1 0)+ --- M--C(0001))

+p 3
4-p4 000P+4p+ 4

=C 1 10 0 + Pl E1
+ P2 E2 + P 3 E3

+ P4 E4

+ (pI+P2)C1 0 0 0 + (p3+P 4)C0 0 1 0

=8.9

This example shows that the first sequential testing

procedure [T10 00 , T11 0 0 , T0 0 1 0] is more economical than the

second one [(T11 0 0 , T1 0 0 0), or (T11 0 0 , T0 0 10)].

LIK

CHAPTER 2

LITERATURE REVIEW

All works which have been done in the area of the

optimization of fault detection and isolation procedures are

directed toward solving two basic problems.

1. Generating a least expected cost testing sequence

to be executed by the automatic BIT diagnostic (Primary

Isolation).

2. Determining a troubleshooting sequence which

minimizes the expected cost of secondary isolation to locate

the single failed unit within a group of LRUs identified by

the BIT primary diagnostic.

The only other problem which has been treated in the

literature is the one which restricts the repertoire of tests

to those which test only single elements and without even

assigning any probabilities to these tests. In this case, the

solution consists of deciding which test to omit and in what

sequence to perform the remaining tests. This problem can be

solved as a machine setup problem as the one in Glassey [6].

2.1 Primary Isolation

Johnson, et al. [9] priposed using the information-

10

11

gain figure-of-merit in order to find a sequence of tests

that can be executed by an automatic diagnostic.

In spite of the fact that this method is easy to use,

it fails to guarantee optimum cost sequence.

Chang [3] used the distinguishability criterion to

produce a low expected cost testing sequence which is not

necessarily an optimal sequence.

Cohn and Ott [4 presented a recursive algorithm

which is based on the concept of dynamic programming. They

used set notation to design a test tree. For every possible

ambiguity subset, they assigned an evaluation, consisting of

the least expected cost of resolving that ambiguity. The

evaluation of the subset of complete ignorance is the cost

of the optimal tree. This evaluation function is computed by

a recursion on the number of elements in the ambiguity subsets.

By treating the equipment states as stages in a

sequential decision process, Sheskin [11] applied probabilistic

dynamic programming to determine a minimum expected cost

testing diagram. Using the recursive relationship, the

solution procedure moves backwards stage by stage. The

solution procedure begins by equating the expected values of

the terminal states, which corresponds to the groups into

which the equipment is partitioned, to the expected costs of

secondary isolation for these groups. At each state, a set

of possible decisions consists of all of the tests which can

be performed is considered and the optimal testing sequence

12

at this state is found, until it finds the optimal testing

diagram when starting at the initial state.

Aly [l] constructed the problem as a search tree, and

presented a branch and bound algorithm to find the optimal testing

sequence.

2.2 Secondary Isolation

Gluss [7] solved the problem of having a fault

develop in a system consisting of n modules where each one

has several elements, and that it is required to dictate a

search strategy that will optimize the search in some fashion

by. minimizing a stipulated cost function. He developed a

model, which assumes that over-all-tests of each module may

be performed, and individual item tests within modules; also,

the search is subject to the constraint that before conducting

item tests the faulty module must first be determined by

module tests.

Firstman and Gluss [5] extended the work in the

previous model of Gluss, in which the estimation of the

probabilities of faults lying in respective modules or

elements is performed in a different way from that in Gluss'

paper: they are computed from element reliability data by

manipulation of the element failure rate. Furthermore,

consideration is given to fault symptoms that are supplied by

weighting the probabilities according to the symptoms infor-

mation.

All the previous search models allow for the

possibility of a test not indicating the true state of the

.4 " :T :" " ,, :.... -.. ." ' : - - - : - ,

13

component tested. However when Butterworth [2] tackled the

problem, he used tests that always give the correct answer.

He developed several rules to find the optimal sequential

policies for series, and parallel systems of independent

LRUs. For a series system, he indicated that the expected

cost for secondary isolation of the failed unit, given that

an equipment fault has been isolated to this unit by primary

diagnostic will be minimized by removing and replacing the

LRUs in a nonincreasing sequence of the values of the ratio

of their probability of failure to the average time of

removing and replacing them.

Butterworth's rules fail to identify an optimal policy

for the simple system where the testing costs are identical

for all components. In this case the condition implies that

all the components have the same failure probabilities.

However, Halpern [8 1 presented a simple adaptive sequential

testing procedure for the k-out-of-n system with equal cost

of all tests. This procedure covers the deficiency of

Butterworth's rules.

2.3 Scope of the Research

From the above section, it is noticed that the only
approaches which guarantee an optimum testing sequence are the

recursive procedure by Cohn and Ott [4), the dynamic programming

,Z by Sheskin [1], and the branch and bound by Aly [1].

Capitalizing on Aly's approach, it seems very promising

I to formulate the problem as a search tree and to find the

AA.

14

optimal testing sequence using a branch and bound approach.

Using this approach efficiently could save a lot of work in

comparison with using the two methods previously mentioned

because of the savings in thu solution space achieved by

using strong dominance rules instead of finding the optimal

solutions among all possible solutions at each node in the

solution by dynamic programming for instance, as shown in

Figure 2.1 for a four LRUs example which uses many arcs. The

same problem could be formulated as the search tree depicted

in Figure 2.2. However, all the arcs which lead to any state

with only one untested LRU and which resulted from applying

tests that remove the ambiguity of exactly one LRU are

omitted in order to simplify both the network and the tree.

Also, by using a good lower bound at each node, most

of the active nodes could be fathomed and the optimal solution

could be found as fast as possible by using a strong branching

rule.

The efficiency of the solution by using branch-and-

bound approach depends upon the strength of the bounds, the

dominance and the branching rules. Consequently, the main

effort will be directed toward finding the dominance rules

which minimize the number of branches as much as possible,

finding the branching rules which concentrate the search only

in the very promising branches, finding a lower bound at each

I node which helps in fathoming the maximum number of nodes, and

constructing a sound and efficient branch-and-bound algorithm.

II' " - . .

t , ,

15

0
4-4

4

.44'

IC

.444
IC

-~ . .0

16

Co4

x

'U

1 0

CDU.

-'4

CD)

Q)

CD CD

.4'P

0 CD

C

- - - -~-- -- '---- ~I~2'-r CD

A *D

CHAPTER 3

A BRANCH AND BOUND APPROACH

In this chapter a branch and bound algorithm is

developed to find the optimal sequence of diagnostic tests

to be executed automatically to isolate the group of modules

which contains the faulty unit.

3.1 Concept of Branch and Bound Techniques

As stated by Lawler and Wood [101, branch and bound

is a method of controlled search of the space of all feasible

solutions. The space of all feasible solutions is repeatedly

partitioned into smaller and smaller subsets, and a lower

bound (in the case of minimization) is calculated for the

value of the objective function over the solutions within the

subsets. If a known feasible solution is available (an upper

bound), then after each partitioning those subsets with a

lower bound exceeding the current upper bound are excluded

from further consideration. Partitioning continues until a

feasible solution is found such that its cost is not greater

than the lower bound for any subset.

Branch and bound algorithms have two main character-

istics; the branching and bounding characteristics. The

17

18

branching characteristic guarantees that an optimal solution

will eventually be obtained. The bounding characteristic

furnishes the possibility of recognizing an optimal solution

prior to complete enumeration.

Therefore, any branch and bound algorithm needs to

define a set of rules for (1) branching from nodes to new

nodes, (2) determining lower bounds for the new nodes, (3)

choosing an intermediate node from which to branch next,

(4) recognizing when a node contains only infeasible or non-

optimal solutions, and (5) recognizing when a final node

contains an optimal solution.

In order to use the branch and bound technique to

find the optimal sequence of tests to be used in detecting

and isolating the malfunctioned unit, the search tree is

constructed as the one in Figure 2.2 with a few modifications.

There is no need for all the nodes in the last level, which

have states including only one untested LRU, since their

status can be found once the search reaches any node with

state of having exactly two untested LRUs regardless of its

level. Consequently, savings can be made in both time and

storage required for the solution. Also, at any node if a

test which does not remove the ambiguity of exactly one unit

(in other words it decreases the number of untested LRUs by more

than one) is applied, the state of this node will be changed to

another two states with more than one level difference between

them and the given node. Therefore, a dummy or fictitious

I7

19

node will be added after the given node in order to keep track

of the two new branches since the expected cost of applying this

test should include the expected costs of both branches.

The modified search tree which is depicted in Figure

3.1 represents a four LRUs example (n = 4), with a maximum

number of levels of (n - 1). At any state S with n(S) remaining

untested LRUs there are (2n(
)- l -

1) branches emanating from

this state. Each branch represents a set of possible tests

which could be used to remove the same ambiguity, and conse-

quently leads to the same new states at another level down the

tree. Since our objective is to minimize the expected cost of

search tests, always, the test with the minimum cost among all

possible tests at every branch will be considered.

In order to save in the storage and time requirment,

which are the main problems in this kind of combinatorial

problem, the nodes (which represents the states) of the tree

will not be generated in advance, but they will be generated

one by one as the algorithm proceeds. This will not only save

the number of nodes but also the size of information to be

stored at each node. Once a feasible solution is found, all

the remaining branches which are emanated from all active nodes

should be checked. At the last generated node, all the previous

branches and nodes which emanated from this node and which are

already examined, fathomed, or had a feasible solution (which

is to be stored) are to be cancelled and the search is to
proceed in a new active branch. By repeating this procedure,

7

!I .

20

I CD
IC

O0

-V

o C)

4

E-3
00

CC)
'4)

0 to
0 0

0 Z3

tto
0 C)

4r

40

>4 4 > (n

21

the number of nodes stored at any time is minimum and relatively

very small.

In the algorithm, the search starts by finding a

feasible solution as quickly as possible by moving directly down

the tree using the branching rules from the initial node at the

first level to another node in a successive level, to a third

one in a successive level, etc., until finding a state of having

only two untested LRUs. Proceed upward in the same branches in

order to update the values of the lower bounds at the fictitious

nodes and, consequently, find the actual values of the lower

bounds in the other branches of all fictitious nodes. This

procedure guarantees finding a fast and good feasible solution

which enables us to fathom efficiently many nodes, especially

since the search proceeds in the most promising branch at each

node according to the branching rules after applying the

dominance rules, which eliminates as many branches as possible.

After finding a feasible solution, the algorithm

proceeds by moving to the last created node and starting

branching and bounding as usual until fathoming all nodes

emanating from it; then going to the second from the last

created node and so on until fathoming the first node in the

tree. In this case the last solution coi £ponding to the last

value of the upper bound is optimal.

71 ,. 7 1W

IJ

22

3.2 Upper and Lower Bounds

3.2.1 Upper Bound at the First Node

on a minimization problem-like the problem presented

here-developing a reasonable initial upper bound on the

objective function value is important because it might help in

fathoming nodes before even computing the first objective

function value associated with a feasible search procedure

generated by the tree. In this case the objective function

value associated with any feasible procedure may serve as an

upper bound.

Since the maximum number of tests required to find

the malfunctioned unit among n LRUs is (n - 1), using the

(n - 1) tests that have the minimum costs among all tests,

which isolate only one LRU at the initial node, is sufficient

to find the malfunctioned unit and consequently presents a

feasible search scheme.

Noting that the cost of the tests in the objective

function should be multiplied by the probabilities of the

untested LRU's at each node in order to find the expected cost,

neglecting the values of these probabilities (which are less

than one), and taking into consideration the expected cost of

the secondary isolation of all n LRUs, results in a value of a
possible and reasonable upper bound.

This initial upper bound, U, is defined as

. '

23

n
Ck n (3.1)

U C k + E P. E
ket i=i

where

Ck = cost of test k.

Pi = prior probability of failure of LRU i.

E. = expected cost for secondary isolation of LRU.

t = set of tests with the minimum (n - 1) costs

among the n possible tests which isolate only

one LRU if they are used at the first node (i.e.,

tests with (n - 1) zeros and only a single one

in the n bits such as tests T1 00 0 , T0 10 0 , T00 1 0 ,

S0001 in case of having only four LRUs).

3.2.2 A Lower Bound for Each Node

At each node in the tree a lower bound is computed based

on the actual value of the expected costs of all tests used

prior to reaching this node, as well as an estimate of the

minimum expected cost of tests required to remove the ambiguity

of all the remaining untested LRUs at this node.

At any node N(S) applying test T will generate twok

nodes N(S) and N(S) corresponding to states S(STk) and S(S,Tk)

respectively which arises two cases according to the number of

remaining untested LRUs at each node.

24

Case 1 Min(n(S), n(S)I = 1

In this case, there is no meaning of generating the

node corresponding to the state of having only one remaining

untested LRU and, consequently, there is only one branch to

be searched, assuming it is the one starting with node N(S).

Since the remaining untested LRUs at this node are n(S)

therefore, at most (n(S) - 1) tests could be used to remove

their ambiguity, and the cost of these tests should be multi-

plied by the sum of the probabilities of the untested LRUs at

each of the (n(S) - 1) nodes.

Since 2 < n(S) < n, then the minimum possible sum of

probabilities to be multiplied by any cost is the sum of the

minimum two probabilities of the remaining n(S) LRUs.

Let I(S) be the set of indices of the n(S) remaining

untested LRUs at node N(S), the prior probabilities plP 2,...,

Pn(S) of these LRUs are arranged in an ascending order such that

P1 < p2... <Pn(s) and C(S) is defined as a lower bound of

the minimum expected cost of tests required to remove the

ambiguity of the n(S) untested LRUs at node N(S), then

C(S) = (P l + P 2) j

where t = set of the n(S) tests with the minimum n(S) costsn

among all possible tests which could be used at this node.

Let T(S,S) be the set of all tests which could be used

to reach the state of node N(S) from the state of node N(S)

TI"

25

and C(S,S) be the minimum expected cost of the test required

to reach the state of node N(S) from that of node N(S), then

C(S,S)- = min[Ck] •

kcT(S,S) iE:I(S)

Based on the above discussion, a lower bound L(S)

at node N(S) representing state S(STk) could be found by

computing the expression

L(S) = L(S) - C(S) + C(S) + C(S,S) (3.2)

If N(S) is the first node in the tree with state S

having n untested LRUs then,

n
L(S) = C(S) + E Pi E. (3.3)

i=l 1

Case 2 Min(n(S),n(S)] > 1

In this case, applying test Tk at node N(S) will

generate two noaes which should be both searched. Instead, a

fictitious node N(Sf) corresponding to a dummy state S

will be assumed to have resulted from applying test Tk at

N(S) and will be inserted after node N(S). Then, the two

nodes will be emanated from N(Sf) and generate the two

branches b(SfS) and b(SfpS) as shown in Figure 3.2.IA

Finding the lower bound at any fictitious node N(Sf)

is slightly different from finding it at any other node, since

it should include C(S) if the search is moving downward in

- .~--- 77

26

S
N(S)

Tk

SS~ N(;~

S(13' Tk N (S) (sf ITk N (S)

Figure 3.2. Sequential testing diagram using a fictitious node

12 :*16C

27

branch b(Sf,S), and includes C(S) if the search is moving

downward in branch b(SfS). Arbitrary in the algorithm the

search will move first to the node with the maximum number

of remaining untested LRUs among nodes N(S) and N(S). Even

though both branches should be searched, this procedure will

minimize backtracking because it increases the possibility of

fathoming more branches. So, if n(S) > n(S) the search will

move downward in branch b(Sf,S). Consequently, the lower

bound at the fictitious node N(Sf) could be computed using the

expression

L(Sf) L(S) - C(S) + C(S) + C(SSf) (3.4) 4

Since there are no tests required to change the state

of node N(Sf) to the states of nodes N(S) and N(S), then

C(Sf), C(SfS), and C(SfS) are all equal to zero.

A final word about the lower bounds. If the search

reaches node N(S) where n(S) = 2, then a feasible solution

could be obtained. Let C be the expected cost of this

feasible test sequence, then

C = L(S) - C(S) + min[C.] E Pi (3.5)

jsT(S) icI(S)

C is the value of the actual expected cost of a

feasible solution unless it results from any branch emanated

Ifrom a fictitious node, in this case it is only a lower bound

I17 T-7

Sa s - ,%

28

of the actual value of the expected co0t of a feasible

solution. To find the actual value the search should go

upward the tree to the fictitious node and update its lower

bound by substituting the last value of C instead of C(S) in

equation 3.4. Then, moving downward in the other branch

b(Sf,Tk), as in Figure 3.2, until finding a node with a state

having only two untested LRUs. At this moment computing C

using equation 3.5 results in the value of the actual expected

cost of a feasible solution because in this case the cost of

the two branches (emanated from a fictitious node) has been taken

into consideration.

3.3 The Branching Rule

The branching rule is the criterion used at each node

N(S) to proceed the search in one of the possible (2n(s) 11)

branches where each branch represents a set of tests which

could be used to change the state of ambiguity at this node

to another state in another level down the tree. The more

effective the branching rules are, the faster a feasible

solution could be reached and consequently the less the time

and speed required.

The branching rule used in the branch and bound

algorithm was proposed by Johnson, et al. [9] as a method for

constructing a good but not necessarily optimum sequence of

tests that can be executed by an automatic diagnostic. Using

this rule will improve the efficiency of the branch and bound

algorithm because it will guarantee finding a good feasible

29

solution as fast as possible.

This rule uses the information-gain figure-of-merit,

Fk' which is the ratio of the ambiguity removed by a test Tk

to the test cost, C This rule is defined as follows:
AA

At any node N(S) with a state having n(S) untested

LRUs, by applying test Tk, which has a cost Ck' either state

S(S,Tk) of node N(S) could be reached if the test passes, or

state S(S,Tk) of node N(S) will be reached if it fails. Then,

k= - [p log2 p + (1 - p) log 2 (1 - P)]/Ck (3.6)

where P = P./ P.jEI(S) I jEI(S) p)

Rank all tests at node N(S) in a decreasing order

according to the values of their F. According to this order

the tests will be chosen at this node.

3.4 The Dominance Rules

Dominance rules could play a very important part in

determining the size of the solution space and consequently

the size of the search tree, especially if it works at the

root of the tree. Therefore, attention should be made in

order to come up with strong dominance rules.

At any node N(S) by applying test Tk two nodes could

be reached; either node of state S(S,Tk) or node of state

S(S,Tk) with n(S) and n(S) remaining untested LRUs respectively.

Divide the set of all possible tests T(S) at node N(S) into

two subsets T, and T where;

'1
30

T =[T kIT k C Tl(S), n(S) n
T(S),nnSS)

and

T k TITk e T (S), n(S) =n

Assume further that state S* is the state with the

minimum number of remaining untested LRUs among states S and

S{ I j ,if n(S) / n(n)
Let p(T k) jci(s*)

mini Z pj, pj if n(S) = n

jCI(S) jEI(9)

The following theorems explain the dominance rules

which e,,ill be used in the algorithm. The detailed structural

proofs of all these theorems are presented in Appendix A.

Theorem 3.4.1

At any node N(S), any branch generated by a test Tk

such that Tk c t dominates any other branch generated by a

test T such that T c T if:

C = min[Ci]

iET(S)

and C < Cm O(T

k- i Tk)4I

Theorem 3.4.2

At any node N(S), any branch generated by test Tk such1I
that Tk C T dominates any other branch generated by test. Tm

such that TM C ' if

- '7 -C ---r--7-

31

Ck mTin [Ci]
IET (S)

and C k CM - P (Tk)

Corollary 3.4.1

Theorem 3.4.2 could also be applied in the opposite

case, i.e., any branch generated by test Tk such that TkcT

dominates any other branch generated by a test Tm such that Tmc-

if Ck = min j)

icT(S)

and Ck < Cm p[TkJ

Theorem 3.4.3

At any node N(S) with a state having at most four

remaining untested LRUs, if test Tk such that Tk C T has the

minimum cost among all tests which can be used at N(S), then

the branch generated by Tk dominates all branches which are

generated by any other test Tm such that Tm C T.

A summary of the dominance rules is presented in

Table 3.1 which summarizes the condition required to make

a branch generated by test Tk at node N(S) dominates another

branch generated by test Tm , where Ck =min (C)•iT(S)

i

- - - -

32

TABLE 3.1

DOMINANCE RULES

mT C T T C T
m m

Tk C T Ck < C Pm P (Tk) Ck < Cm " P(T k)

If n(S) < 4
no other conditionT k k Cm P(Tk) if required
If n(S) > 4
no general rule
is founded

3.5 The Branch and Bound Algorithm

In this section the complete branch and bound algo-

rithm for determining the sequence of diagnostic tests to be

executed automatically by the BIT to isolate the group of

modules (LRUs) which contains the faulty unit is given.

The input parameters are:

n = Total number of LRUs

T = Set of all tests which could be used

pi = Prior probability of failure of LRUi , i = 1,2,...,n

Ei = Expected cost for secondary isolation of the

* failed unit in LRUi"ot
Ck = Cost associated with test TkT

33

Values of the objective
function are:

UB = Upper bound on expected total cost

L(S) = Lower bound on expected total cost at state S

C = Expected cost of a feasible test sequence

The parameters for creating, fathoming nodeb and

branching are:

ND = Current node number

n* = Counter for nodes created

S(S,Tk) = State S generated by applying test Tk at

previous state S

n(S) = Number of the remaining untested LRUs at node S

N(S) = Node corresponding to state S

T(S) = Set of the 2n(S)
-l - 1 possible tests at state S

I(S) = Set of the n(S) remaining untested LRUs at

state S

C(S) = Lower bound of the minimum expected cost of

tests required to remove the ambiguity of the

n(S) untested LRUs at state S

Y(S) = Set of the remaining feasible branches after

applying the dominance rules at node N(S)

(each branch could be generated by at least

one test).

2(S) = Level of node N(S)

Step 0 Initialize the input parameter, let S be the initial

state of node N(S), n(S) = n, £(S) = 1, ND = 1, and

n* = 1. Compute UB using equation 3.1 and L(S) using

equation 3.3.

. .. _______.. .. .___,__ 4

34

Step 1 Apply a stopping test based on the secondary isolation
n n

costs. If C(S) + E pi E. > E Ei Use thei=l -i=l

secondary isolation for all LRUs, stop. Otherwise,

go to 2.

Step 2 Use the dominance rules to find Y(S).

Step 3 Find the information-gain figure-of-merit Fk for each

branch or test Tk E Y(S) using equation 3.6. Rank

them in a decreasing order according to the values of

their F.

Step 4 Start branching using branch of test Tk with the

maximum F among all tests in Y(S) and remove this

branch (test) from Y(S).

Stup 5 Generate the new two possible nodes by using Tk at

node S, denote them N(S1) and N(S2). Find n(S1) and

n(S2)•

Step 6 If min [n(S 1), n(S2)] = 1, let node number n* + 1 be

the node with max (n(Sl), n(S2)], go to 7. Otherwise,

let node number n* + 1 be a fictitious node, go to 8.

Step 7 Let state S be the state of node number n* + 1, let

ND = n* + 1, £(S) = k(S) + 1, go to 11.

Step 8 Let state S be the state of node number n* + 1, let

ND = n* + 1, Z(S) = Z(S) + 1.

Find L(S) of the fictitious node N(S) using equation 3.4.

Step 9 If n(S2) > n(S1), let node number ND + 1 be N(S1),

and node number ND + 2 be N(S2). Otherwise, let node

number ND + 1 be N(S2) and node number ND + 2 be N(S1).

17 A-

35

Step 10 t(S = (S) + 1 and OS 2) =Z(S) + 1, let S be the

state of node number ND + 2. Let n* = ND + 2.

Step 11 Compute L(S) using equation 3.2.

Step 12 Apply the secondary isolation stopping test. If

C(S) + E P. * E. > Z Ei Go to 15. Other-iE:I (S) 1 - i I (S)

wise, go to 13.

Step 13 If L(S) > UB, fathom node N(S). Go to 21. Other-

wise, generate T(S), go to 14.

Step 14 If n(S) = 2, compute C using equation 3.5, go to 16.

Otherwise, go to 2.

Step 15 Compute C = L(S) = C(S) - E P. * E. + Z Ei,
iCI(S)i i:I (S)

Y(S) is empty.

Step 16 If C > UB, fathom node N(S), go to 21. Otherwise,

go to 17.

Step 17 If k(S) = 2, the last solution is feasible. Let

UB = C, and state S be the state of node number n*,

go to 22. Otherwise, go to 18.

Step 18 If node N(S) is branched directly from a fictitious

node, go to 19. Otherwise, go upward the same

branch to the next node, let S be the state of this

node, with number ND.

Step 19 If node number ND-I is fictitious, let S be its state

and let ND = ND-I, go to 17. Otherwise, let S be

the state of node number ND-2 and let ND = ND-2, go

to 20.

A

36

Step 20 Update the lower bound at the fictitious node N(S)

by substituting the last value of C instead of

C(S) in equation 3.4. Let S be state of node

number ND + 1, let ND = ND+1. Compute L(S), go to

12.

Step 21 Let ND be the number of the node N(S). If N(S) is

branched from a fictitious node, fathom also node

number ND-I, and let S be the state of node number

(ND-2) and let its number be ND. Otherwise, let S

be the state of node number (ND-I) and let its

number be ND.

Step 22 If £(S) = 1, go to 30. Otherwise go to 23.

Step 23 If Z(S) = 2, go to 28. Otherwise go to 24.

Step 24 If N(S) is fictitious, or n(S) = 2, let state S be

the state of node number ND-I, and its number is

ND, go to 22. Otherwise go to 25.

Step 25 If Y(S) is empty, go to 26. Otherwise go to 31.

Step 26 If N(S) is branched from a fictitious node, go to 27.

Otherwise, let state S be the state of node number

ND-I and let its number be ND, go to 22.

Step 27 If the lower bound at the fictitious node has been

previously updated, let state S be state of node
number ND-I and let its number be ND, go to 22.

Otherwise, go upward this branch to the next node

let its state be S and its number ND, go to 22.

' -, - --- . ._
"W' 7 - k-7 V L-

37

Step 28 If N(S) is fictitious, or n(S) 2. Let S be the

initial state, go to 3-. Otherwise go to 29.

Step 29 If Y(S) is empty. Let S be the initial state, go to

30. Otherwise go to 31.

Step 30 If Y(S) is empty, stop, go to 32. Otherwise go to

31.

Step 31 Let n* be the number of node N(S), go to 4.

Step 32 The optimal sequence of tests is the one associated

with the last value of the upper bound UB.

3.6 Verification of the Algorithm

The algorithm of Section 3.5 was coded in FORTRAN IV.

The code was verified using the example problem used in [11)

and shown in Table 1.1.

The search tree used in solving this problem by branch

and bound algorithm is presented in Figure 3.3. The same

optimal sequence of tests has been obtained. Either sequence

of tests T1 0 00 , T11 00 , and T0 0 10 or T1 00 0 , T0 01 0 , and T100

produced the same optimal solution.

From the tree presented in Figure 3.3 it is noticed

that the dominance rules and lower bounds worked efficiently

to reduce the size of the tree to include only seven nodes

compared with the original possible tree for four LRUs, which

has 23 nodes as well as the dynamic programming network which

has 16 nodes.

,,, .. . --.

-- ..IIkti,

.

33

U) l)

E- ZI

04

-Ln-V

.1 x

Cl) C> C

1-4 C.D

E4-1 U) a

C)

Ca)

prz4

'4-

- ~ -'.D --.--
EH

'I'-'- -- ' t

39

it is noticed, also that even though the total number

of nodes generated during the execution of the algorithm was

seven, the maximum number of nodes stored at any time was

only three, which is relatively small and reasonable. Also,

the first feasible solution happened to be the optimal solution

which shows the strength of the branching rules and its

effectiveness in helping fathoming the remaining active nodes.

Thus, in a simple test example, the efficiency of the

algorithm was verified.

3.7 The Heuristic Algorithm

The branch and bound algorithm explained in section

3.5 finds efficiently the optimal solution. However, the size

of the problems which could be solved by this algorithm is

relatively small because of the storage burden and time

requirement, which is inherented in most combinatorial

problems.

This heuristic algorithm is simply the same branch

* and bound algorithm explained in the previous section with

S two more stopping tests which stop the search for optimality

by stopping the search either directly after finding the

second feasible solution or after generating a limited number

of nodes based on the maximum number of nodes required to

find a feasible solution. By experiment it was found that

the best results happened when the search stopped after

I . .

40

generating a number of nodes equals to fifteen times the

maximum number of nodes required to find a feasible solution.

These tests were developed from the computational results of

the branch and bound algorithm which showed that most of the

search time was consumed in proving optimality not in finding

the optimal solution itself.

The stopping test based on the second feasible solution

can be added in step 17 in the branch and bound algorithm.

While the stopping test based on the total number of nodes

could be added before step 11.

The value of the objective function obtained by the

heuristic algorithm was found to be on the average, 99.244%

or more of the values of the optimal solution for all test

problems. The details of the computational experience are

presented in Chapter 4.

vI

Ai

4J

* - - --. -,-Z

CHAPTER 4

COMPUTATIONAL RESULTS

In this chapter the computational experience with

both the branch and bound and heuristic algorithms presented

in Chapter 3 is demonstrated and analyzed. The test problems

were randomly generated from uniform distribution. All

probabilities of failure of the n LRUs were generated from a

uniform (0-1) distribution. The costs of all tests were generated

from a uniform (1-20), while the expected costs for secondary

isolation of all LRUs were generated from a uniform (1-10)

distribution. All problems were run on the University of Oklahoma

IBM 370/158J computer. The results are summarized in Table 4.1.

As in all combinatorial problems, the required compu-

tational time is a function of the size of the problem as well

as the number of active nodes. As depicted in Figure 4.1 the

*case of n > 8 LRUs is the critical case where the time starts

increasing exponentionally from 10.6 seconds in case of n = 7

to 160.345 seconds in case of n = 8.

Table 4.2 displays a comparison between the branch and

4bound algorithm and the heuristic one. The savings in compu-

tation time by using the heuristic algorithm is obvious,

ji especially when the number of LRUs increases. However, the

4

42

w -4 4

Q) 4J (%J0

> O .-4 04 o A
4 0z -4 C4l LA 1-1

4 Ln r- o~ 0 -

as 4-4 00 oz

ot
40 04-) m .D (f (4 I.D ('

Z((C4 r-4 fn1 W. -4 LA)
U) 1* .0 0 (

E-44

10

0 4'
44W 0' toN "~
U)~~ ~ wO Go m w -4~D '

E-0 Q)uco k

-4 0) 14 c-4 '. A A

010 e ~ j LA m .

>- 0 r'I

w

.1 '-40

Ic

0 -4 1 0 LA C) 0 N> CD N

zo

II
v 'r %0 -- w644i

-. 43

-'18-

E

P

16-

14-

12 1'
10-

8-

6-

4

2-

IL
3 4 5 6 7 8 no. of LR

Figure 4.1. A plot of computational times for selected problems

ME&- - ML~.~-

44

TABLE 4.2

A COMPARISON BETWEEN THE RESULTS OF BRANCH AND
BOUND AND THE HEURISTIC ALGORITHMS

ftime %ge of difference in the
Average CPU Time %ge ofby objective function between

Sec saved the optimal and heuristic___e___ _____ usingthopiaanhersc
heuristic

LRU B&B Heuristic Average Maximum

4 .331 .318 3.86% .4418% 3.91%

5 .526 .426 18.95% .756% 7.25%

6 1.765 1.032 42.17% .349% 3.37%

7 10.6 6.113 42.45% .666% 3.4%

8 160.345 23.579 85.3% .0124% .0749%

9 1253.715 74.137 94.00% 0 0

10 >3600 280.135 >92.2% optimal solution
is not known

sacrifice in the optimal value of the objective function is

less than 7.25% of the optimal, and on the average it is less

than 0.756%. Also, Figure 4.2 shows that the heuristic

algorithm reached the optimal solution in more thar 82% of the

problems tested which shows the effectiveness of this

algorithm.

Table 4.3 shows a comparison between the branch and

bound algorithm and the dynamic programming approach used in (11].

This comparison is based on the maximum number of nodes created by

..

45

100

60 1st o feasible solution pia

0

$40

30

20

10

2 3 4 5 6 7

Number of LRUs

rigure 4.2. A plot of the percentage of time the optimal
solution was reached under two conditions

F.

46

TABLE 4.3

A COMPARISON BETWEEN THE BRANCH AND BOUND
AND DYNAMIC PROGRAMMING ALGORITHMS

LRU

n- 3 4 5 6 7 8 9
nodes
created

Branch andBound 4 26 113 432 666 2812 1959

Dynamic 12 77 39 1767 7560 31369 128010Programming

using both algorithms. The comparison indicated a dramatic

difference in the number of nodes created especially for

n > 7 LRUs. A comparison in the computation time would have

been rather more important. However, no computational results

were reported in case of using dynamic programming, only the

upper bound on the number of states generated by dynamic

programming.

4"

CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

Two approaches to the cost effective design of fault

isolation procedures were investigated. The problem was

formulated as a search tree in which the optimal search

procedure could be found using a branch and bound approach.

Dominance and branching rules were developed, then a branch and

bound algorithm was presented.

Having studied the computational results, another

heuristic algorithm was developed which proved to be efficient

and fast. An example problem was solved to illustrate the

efficiency of the branch and bound algorithm and was compared

with a previous dynamic programming algorithm.

Computational results indicated that the heuristic

algorithm was faster than the branch and bound one with a very

slim sacrifice in optimality.

Computational results were reported and compared to the

4 4
I available results of other algorithms.

5.2 Conclusions

Several conclusions can be drawn from this research

regarding the consideration of new approaches for fault isolation

447

47_7

1:7 =7~

48

problems. They are:

1. The branch and bound approach could be used

successfully to tackle the problem of designing a cost

effective fault isolation procedure. Because of the branching

and dominance rules, many of the nonoptimal solutions would be

eliminated early in the solution procedure which could

efficiently reduce the size of the required search tree, as

well as the time and storage needed to find the optimal

solution.

2. The branch and bound algorithm proved to be more

efficient than the dynamic programming scheme which has been

used in previous works to seek optimal procedures.

3. The heuristic algorithm presented in section 3.7

proved to be a good compromise between the ultimate goal of

optimality and the problem of time requirement to achieve this

goal. This algorithm has the advantage of finding a near

optimal solution in a very short time compared to other

methods.

4. Even though the size of problems solved efficiently

by the two algorithms are limited to nine LRUs, this size is

still greater than any problem reported to be solved in any

* iprevious work.

5.3 Future Work

Recommendations for further research in the cost

effective design of fault isolation procedures would be:

iI

49

1. Developing a technique to minimize and control

the number of possible tests which could be used in the

search because of the dramatic increase of the possible

number of tests with the increase of LRUs.

2. More investigation in developing branching and

dominance rules and more work in designing test procedures

using branch and bound approaches.

3. Investigating how to partition the equipment into

optimum groups of modules.

4. Considering the problem without neglecting the

possibility of multiple failures of two or more LRUs at the

same time.

5. Studying the effect of imperfect information on

the optimum test procedures and how to modify the solution

according to that (sensitivity analysis).

6. Determining an optimum procedure which minimizes

the expected cost of secondary isolation to locate the single

failed unit within the group of LRUs identified by the BIT

primary diagnostic.

i .4 "'I l l " ' " " " ' • - ' .. , " "..

REFERENCES

1. Aly, A. A., "Optimum Design of Built-in-Test Diagnostic

Systems," A Report submitted to AFOSR. 1979.

2. Butterworth, R., "Some Reliability Fault-Testing Models,"

Operations Research, Vol. 20 (1972), pp. 335-343.

3. Chang, H. Y., "A Distinguishability Criterion for

Selecting Efficient Diagnostic Test," AFIPS Proceedings

of Spring Joint Computer Conference, Vol. 32 (1968),

pp. 529-534.

4. Cohn, H. Y. and Ott, G., "Design of Adaptive Procedures

for Fault Detection and Isolation," IEEE Transactions

Reliability, Vol. R-20 (1971), pp. 7-10.

5. Firstman, S. I. and Gluss, B., "Optimum Search Routines

for Automatic Fault Isolation," Operations Research,

Vol. 8 (1960), pp. 512-523.

6. Glassey, C. R., "Minimum Change Over Scheduling of

'4 Several Products on One Machine," Operations Research,

Vol. 16 (1968), pp. 342-352.

7. Gluss, B., "An Optimum Policy for Detecting a Fault in a

Complex System," Operation Research, Vol. 7 (1959),

pp. 467-477.

8. Halpern, J., "Fault Testing for a k-out-of-n System,"

Operation Research, Vol. 22 (1974), pp. 1267-1271.

50

'~OIL

51

9. Johnson, R. A., Kletsky, E. J. and Brule, J. D., "Diagnosis

of Equipment Failures," SURI, Report No. EE, 557-594T1 (1959).

10. Lawler, E. L. and Wood, D. E., "Branch and Bound

Methods: A Survey," Operations Research, Vol. 14

(1966), pp. 699-717.

11. Sheskin, T. J., "Sequencing of Diagnostic Tests for

Fault Isolation by Dynamic Programming," IEEE "rans-

actions on Reliability.. Vol. R-27 (1978), pp. 353-358.

APPENDIX A

DOMINANCE RULES THEOREMS

The proofs of all theorems which have been used to

determine the dominance rules in Section 3.4 are presented

here.,

in order to simplify the proofs, the cost Ck of a

test Tk which has l's in positions i,j,...,z will also be

identified as C.

Theorem 3.4.1

At any node N(S), any branch generated by a test Tk

such that Tk £ T dominates any other branch generated by a

test Tm such that Tm C T if:

C k = min[C i]

icT(S)

and C < C "(T

4k- in (k)

Proof

Referring to Figure A.1 and Figure A.2 which represent

two branches from the search tree of a problem of 5 LRUs, both

52

Maa --aL

53

W 0

00

00

-4-

4.?D

.40

1r

. . . . *)

54

-44

0 0

-1-

z 0)
C0)

a Uo

(D 0
C> C> 4

00

r-4 E-4

zz

.114
r-

C:
r-

- -- -4--~
4 ~-2 :-r'7--- ~0-

55

branches are emanated from the first node and by using tests

belong to set t. All tests which could be used at any branch

are presented in Table A.l.

Let the cost of branch b (Sors1 3 s) which pass through

nodes N(S 0), N(S 1) and N(S 5) be C b (Sris5) and let the

cost of branch b (Sol'sS 7 S1 which pass through nodes N(S0 ,*

N(S 6), N(S 7), N(S 10) be C b 2(SOPS 6 FSV S1 0), then,

C b 1 =SP11 C 4 5+(P4+p5)-mi CC4lC3'l5C2'

C 2 ,5 ',C3 ,5]+(pltp2+P3) -min [lC, 4 IC 2,3 ' C1 ,5 +

(P2+p3 *5min[Cl 2,C 2 C3 C2 4 C2,5 'Cl,3 C3 ,4 '
C 3 ,5] + E P. E..*

and

C b 2 SP F 1S1 C I+(p 2 I+p 3+p 4 +P5 min[C 1 ,2 'C2 + (p 3+p4 +P5)

minC 2 ,3 ' C1 ,3 C 3 'C 4 ,5 +(P4 +P5) -min [C5 '
5

i=1 1

Branch b S'iS5generated btetT011dominates branch

b 2 (SO'S 6 F S7 S 10) generated by test T 10 00 0 i

C4 ,5 + (Pl-sP 2-fP3) -minICl] + (P2+P3) 'min[Cl 2 'C2

< C 1 + (p 2+p3+p4+p5) min[C 1 ,2 C2] + (P3+P4+P5) min([C 4 ,5 "..]

* But if C 4 =Min [C.
45 icT(S) 1

5
and since E p. 1, therefore

J i=l1

56

E-4 E-1 E-4 E-4 P 4 E-

CD 0 0r-00Q0
HOE10-4O-H -4 E-4

Ln C) C50000-0 Q0

H D0 0 00 -I-
E-4000 0- -0 -C '

0 0 &4 E- -4 E E-4

En Q 0 0 0 CD 0

< E- E0E-4 HE-4 P E4
E4%

r- r4 C 0000 a0 0
(D -C -4 1-40 C> -I 0 0 0-f1-

0 ~ ~ ~ ~ ~ 0 E-4 v-I C)C -I D0

rL4 Cl CD ~ ~ -4 H < -4 r-f -40

f- -4 p - H H &4 F4 H

W E-4 r- CD C>0-4 0 4 0 00 C
1- 0 r- -40 v- 14 0-4

0 r-4 - r-4 C) 0 a 0 -I -4
m- 0 1-4 0 0 4 0 0 0011- P-

C 0 C) DIC -4 0 .-I a C CDvCD
0o -4 0 0 v-I4a -0 0000C

00 aC 0 00a0 00-
00 C) -0 1-4 0 v-I CD I C -4 -00

E-4 P E-4 E-4 E- H H P E4E4E1E

C>00 0 0CD-4 0CD000D0
'4C 0 C-I r- 0 a0 0 a- -0 0

-4E- 0 v-4 0 0 0 Or- ClC yI-4 C)

E0E-4 C - -4-4D 0

000 I -4 0 0-4D0 0001C
004&,&- E 00 H- -0 E- 0 00E4 -

0 0 0 0 0 0 -I 0
0 000000-000

rziC 00 0 0 - 0 00a

C12r- 00040 00000
Ea 14 000H0 00 vI -0 00P

E-4 -00 -I a -I 0 0004 -40

r-4 a 0 -I- -40000 -

oE-4v 4 0

U 0 0 0 0 0 v-I v-

I- -I r- r- 4 r- l a r4 H 0 4 r-4
r-4 -- - - 4 r - -

000V 4 0 CD -4 0 00r40

0 0 - - -I .I 0 4 0
<U~ .- v-I 4-4-4- -4 0 -I v-

57

branch b1 (SoSIS 5) dominates branch b2 (SotS 6 ,S7 ,S1 0) if

- (p 4 +P 5)Cl < (P 4 +P 5) min[Cl 2 C 2] - (pI+P 2)C4 ,5

i.e. (p4+P 5)Cl > (pl+P2)C4,5 - (p4+P 5) • min[C 1 2,C 2]

which could be satisfied if C4 5 < (P4+P 5)CI"

This proof is valid even if the cost of branches

b3 ($0 ,SS 3) and b4 (S0 ,SI,$4) are less than that of bl(SO

Sit$5) because in this case they dominate branch b1 (S0 ,SIS 5)

and consequently dominate branch b2 (S0,S 6 ,S7,S 0). However,

it is not the same for other branches b5 (S0 ,S6 ,S7 ,S1 2) and

b2 (S0 ,S6 ,S7,S1 0). Therefore, it should be proved that branch

b1 (S0 ,SIS 5) dominates branch b2 (SOS 6 S7,S1 0) and any other

branch generated by test T1 0 0 0 0 , whatever the branch emanating

from node N(S6) with minimum cost is.

Case 1 If branch b5 (SOS 6,S7,S1 2) is the optimal branch

generated by test TI0000

Let the cost of branch b5 (SO,S 6 S7 ,S 12) be Cb 5(O'$6'

$7 ,S12)

Cb 5(S 0,S6,S7,S2 = C1 + (P2+P3+p4+p5) -min[C 1 ,2,C2] + (p3+P4+

P5)
'min [C5

,
2 5 ,c 1 5 ,C3 4] + (p3+p4)-min[C 3,

' ' 5
C4C 1 CCI ,C,C 4 C 5,4]+ X i pE..4' 1,3' 1,4' 2,3' 2,4' 3,5' 4 i= * 1

So, if C4 5 < min[C.]'4 -- iT (S)

then branch b1 (S0 ,SlS5) dominates branch b5 (S0 ,S6,S7,S1 2) if

C4 , 5 + (p4+P 5) . min[C 5 ,C 4 ,CI, 4 ,C3 4 ,Ci 1 5 ,C 2 , 4 ,C 2 , 5 ,C 3 , 5] +

a=

----.. ,

58

(p1 +P2+P 3) 4min[CC,4 ,C2 ,3,Cl, 5] + (p2+P3) 58,2'2'C3'

C2 ,4,C2 ,5 CI 3,C 3 ,4,C 3 ,5] < C1 + (P2+P 3+P4 +P5) min[C 1,2 C2]

+ (p3+P4+P 5) minC 5 C2 ,5 ,Cl,5,C 3,4] + (P3+P4) C4 ,5

or - (p4+P 5)Cl < - (pl+P 2+P 5)C4 ,5 + (p4 +P 5) • [C,2C 2

+ P3 min[C5 , ..

or (p4 +P5)CI > (pl+P 2+P5)C4 ,5 - (p4+P5) min Ci 2 , ...

- P3 min[C 5, ...

which could be satisfied if

C4,5 -L (P4+p5)CI

under the condition that

C4,5 = min[Ci]

ieT(S 0)

By the same procedure it could be proved that branch

b1 (S0 ,S I S 5) dominates branch b6 (S0 'S6,S7,S1 1) and any other

branch generated by test T0000 and a test Tk such that keT at

node S6 .

Case 2 If branch b7 (S,S 6,SS 9) is the optimal branch

generated by T1 0 0 00

Let the cost of branch b7 (S0 S61 S8 ,S 9) be Cb (S0 ,s6 ,$8,S9)
77

4 b (S ,S6, 8 S9) = C1 + (p2 +P3+P4+P5) • ra n C2 4 C3 5] +

(p2+P4) min[C 4 ,5...] + (p3+P 5) - min

[4,5""]

So if C4 5 = min [C]

icT(S 0)

''MYJN-'- z

59

. branch b1 (S0 ,SlS 5) dominates branch b7 (S0 ,S6 ,S8 1 S9)

if - (P4+P 5)Cl < - Pl C 4 ,5

i.e. (P4+P 5)CI > Pl C4 ,5

which could be satisfied if

C4 ,5 - (P4+P5)Cl

Therefore, in any event the branch generated by T0 0 01 1

such that T00 01 1 6 T dominates any other branch which is

generated by T1 0 00 0 such that T1 0 0 00 E if

C4 ,5 = min [C]
ieT(S0

and C4, 5 < C1 * P(T00011)

Theorem 3.4.2

At any node N(S), any branch generated by test Tk such

that Tk E T dominates any other branch generated by test Tm

such that T m T ifm

Ck = min [Ci]
i£T(S)

and Ck < Cm " P(Tk)

Proof

Referring to Figures A.3 and A.4 which represent two

branches in a search tree of problems having 6-LRUs, the first

branch in Figure A.3 is generated by T1 00 0 00 where T100000 C T

and the second branch in Figure A.4 is generated by T1 1 1 00 0

where T11 1 00 0 C T. All tests which could be used at any branch

* *: A-

60

-4

0

C) E:

C>C.

C, o

C))

-- I
4-

i-
Iu

W~ d -. -'-- ------ -. -

61

-4 -4 -n
C) C)

- 0 4

CD 0

o

o 0

-4 44
E-4-

or-4

U) 0

-44
-4 ECD

-40 CD

0 0)

0 OD

-44
0)

z7
!Am A.

62

are presented in Table A.2.

Let cost of branch b1 (S0 ,SIS 3 ,S5) be Cb (S0 ,SI,S 3 ,S5)

Cbl(SOSlS 3 ,S5) 5 C1 + (p2+P3+p 4+Ps+P6) min[C 2 ,3,C1,2,31

+ (p2+P3) min[C 2 ,C3 ,...,C 1,3,6]+ cost of optimal

6
search starting from node N(S3)+ E Pi Ei"

i=l

Let cost of branch b2 (S0 ,S6 ,S8) be Cb (S0,S6,S8)

Cb (S0 ,S61S8) C 1,2,3 + (p1+P2+p3) min[C, ..] + (p2+P3)

min[C 2 'C31 ... ' C 1 3 6] + cost of optimal search
6

starting from node N(S7)+ E Pi E..
i=l

So if C1 min[Ci]
iET(S 0)

then branch bI (S0,SlS 3 ,S5) which is generated by test T

where T1 0 00 0 0 6 T dominates branch b2 (S0 ,S6 S8) which is

generated by test Tll1 0 00 where T11 1 0 00 E T if

C1 + (p2 +P3+p 4+P5 +P6) m (C2 3, C1 ,2,3) C 1,2,3 +

(pl+P 2+P3) min [C, .

or if C1 + C1 ,2 ,3 (p2+P3+P4+P5+p 6) < C 1,2,3 + (P1+p2+p3)C1

-p1 C1 ,2 ,3 < - (P4+P5+p 6)CI

Pl C1 ,2,3 > (P4+p5+p6) Cl

which is still satisfied if

C1 < P1 C1 ,2,3

',*~ * - - -

Z, . . 63
0 4 0 0 0

0 Q aD a4 0

E4 E4 E" 5-4 E54

1-4 14 .4 .-4

0 E4 04 0 E4

r-4 0 r-4 04 4 .4
0 0 0o- a 0 .4 0 -a 0 a 0

54 54 5-4 54I 5r-

E-0E-6 E-4 E-4 P 4 Ek a- a a
.0.4.44 a a a a
.4.40000- r- 4 0 .44 0 4 .4

E-4 0 0 0 0 0.4- 0 04 -.- 4 0 14 4
000 04 0 0 0 04 14 0-

-4. 4-4 -4-4 4 0 0 0 0 0
z E-45H4H4 E-4 E-4 54f 5f E-0 E4

'0 .4 rI: -6 r- 4.

.40. -- 40C 40 0 0 0 v.4 0 0
040 0 00 r. r4 V000- 0 0 00

E-0-04.4-4 0 r-4 0 0 t 0 0V
-4 4 4 400.-4 C4 04 0 4 4 4-

0000.44 0 0 0 4.D 4 0-.4 . 40
0 E- 4 4 .444 0 r 0 0 0 0,4- 4r4 l0- D-
w4 45-44 - 4 ,4 *54r40Q)0 4 54)

44J .0 0 40 -4 0 .4 -0 .4. 4 0 04. 0 .CD4
0 4 0 .4 0Dv C 0 0- 4 0 -4 04.4 0- 4

0 04 400 .4 0 0041- 00 00 C0
E-4 ~ ~ 0)r 0 0 0. 4.(0 0-1 0 000 0 0C)-

04 . D4.4. V04 0 00.4.0 0 0 0 01414 -

0U Q4 0 0 0 -4 04 - 40. 00 001 Ij- 0 0.4
CQ E-40.40r 0 0 04 . 40 0.CD4004040.CD0

< 5) 0 > 040 0 0, r- 0-44. r4.r 4 -0.4 -4-

r4 .-4 0 - .4 0 0 C q0 0>0 0.0 0 0 00
fA0 q 040.4.40.rA 4 400 00 C0
0 0> 0 0 0- 0 0.0 .4lrf 04 44.4

.40 0.4)0 04 4 0 0 4.0 0)0 00
0 54 0 4 0r4- 04.4 0 04 00 -4Iir- 00 4 0.40.4 -

E-4 E-0 04 0 00 E 0E40 00 E-4H -4 4 & 4 E4

r- 540 0 00 0 .0 4C04 V00 00r-
.4.4.4-I 0 0 0.4)0 C)00 00 00 00

:50Cl 0 04 4 0 V. 4 0 0 C4-0404.4.4 -4.4

0 0> 0 0, 0- 0DrI- 0 004 004 0.40-4)0r4

4.Q40.C> 0 0 0.4) 0 0 0 00 00 00
4 ~ .0-4 0C)0D 00 0 00.4C)00 00 00cn

0 0 0) 0 . 0 .())4,404.40,404400
0 V0 0 rA 04 r-4 00 00.4.400.4.40

1~~~ ~~ 0.0 0 0 0 0 0 .r4r4 4v4.400 C r(r4 0 C)0. 4
U1 0 C-0D.4 0 0) 0 0 0- 004 00 004 00 00- 4 -

0 0 0 040 ".400 00. 0 04

0n 0 0- 0. 0 4 4 . 0 4 . 0 04

4 0 0 0 0 0 0000 00 00

0.-401 0 0 a 04 0 0 00 00 00 00 00

04 0 0 .4 04.4 00 00 00 00
0 C>0 -4 0 A . 440 0 0.4.4.40 0.4

1)0 0 0.0 0 - 0 0.0 .40.- .4- 44- 4-

0 0 0 -4r- 0 0 4 r0 0 0
0 .4 .4- - 40 0 0 0 0

64

This proof is valid whatever the optimal branch from

node N(S1) is because if any other branch dominates branch

b1 (S0 ,SIS 3 ,S5), it will also dominate branch b2 (S0 ,S6,S 8).

However, to check the validity of the proof if any other branch

from node N(S6) is optimal, let the cost of branch b3 (S0 ,$6 ,S9)

be Cb3 (S0 S6 ,S9).

Cb3(SolS 6 ,S9) = C 1,2,3 + (pl+P 2 +P3) min IC3 ,C1,2 ,C3,4 ,c3 51C3 6,

C1 ,2,6,C 1,2 4,C1 ,2]+(pI+P 2)'min[Cl,...]+ cost of

6
optimal search starting from node N(S7)+ E Pi.E.-

i=l 1

So if C1 = min[C i]
iET(S 0)

Then branch b1 (S0,SIS 3 ,S5) dominates branch b3(S 0 ,

$61 9) if C1 - P C 1,2,3 + (P2 +P3) min [C3 ,CI 2, C3 ,4 ' C3 ,51

C3,6,C1,2,6,CI,2,4,CI,2,5' ...] < (pI+P 2)CI + (pl+P 2+P 3) min

[C3 'CI1 2'C3 ,4'C3 '5 'C3 ,6'CI 1 2 '6 'CI' 2 '4 'CI' 2 '5]

or - p, C 1,2,3 < - (P3+P 4+5 +P 6)CI + Pl min [C3 , ...]

or Pl C 1 ,2f3 - (P3+P 4+P 5+P 6)CI - Pl min [C3, ...

which could be satisfied if

C1 P1 C 1,2,3

By using the same procedure, it could be concluded

that a branch generated by test T where T E

dominates any other branch which is generated by test T

where T11 1 0 00 F if

-

65

C1 min [Ci

icT(S 0)

and C1 C • p(T100000).
1- 1,2,3

Corollary 3.4.1

Theorem 3.4.2 could also be applied in the opposite

case, i.e., any branch generated by test Tk such that Tk E

dominates any other branch generated by a test T such that T CT
m m

if Ck = min [Ci]

icT(S)

and Ck < Cm " p[Tk]

Proof

Referring to the proof of theorem 3.4.2, and Figures

3.5 and 3.6

if CI,2, 3 < min [Ci]

icT(S 0)

Branch b2 (S0 ,S61 S8) which is generated by test TII1000

where T11 1 0 00 c t dominates branch b1 (S0 ,S1 1 S3,S 5) which is

generated by test T1 0 00 0 0 where T1 0 0 00 0 E T if

-(P4+P5+P6) C1 -LC,2,3

or (p4+P5+P6)C1 > PlCi,2,3

which could be satisfied if C 1,2,3 (p4 +P5+P6)Cl.
This proof is valid whatever the optimal branch from

node N(S6) is. However, to check the validity of the proof

if any other branch from node N(S1) is optimal, let the cost of

+ '+. . .: . i. + P - +' + + + :* + , , -+ .. . :. , + -

66

branch b4 (SotS1 ,S2,S4) be Cb0(SoS1,S2,S4).
4

6 6

Cb 4 (SOS1'S2' S4) C 1 + E pi - min[C 2 'C1 2 + 3 Pi min[C3Vi=2 ' i=3

C 1 3 ,CI,2 ,3,C 2 ,3]+[cost of the optimal search

starting from node having the state 000111] +
6
iPi * E

So if C 1 ,2 ,3 = min [Ci]

iET(S 0)

Branch b2 (s0 ,S6,S8) dominates branch b4 (S0 ,SIS 2 ,S4)

if C 1 ,2,3, + p min [C, ...] + (p2+P 3) min [C2 ,C1 21 .]

6 6
< C1 + E p. "min (C2,C 1 ,2 + pi min [C,2, 3 ...]
- i=2 1 i=3

or - (p4+P 5+P 6) C1 - (PI+P2+P3)CI,2,3

(P4+P5+P 6)CI > (PI+P2 +P3)CI,2,3

which could be satisfied if

C1 ,2 ,3 < (P4+P5+P6)Cl

which is still satisfied if

C1 ,2,3 L min [(pl+P 2+p3), (p4+P5+P6)] • C1

Therefore, in any event a branch generated by test

TI11000 where T11 1 0 00 E T dominates any branch which is

generated by test TI0 00 00 where T10 00 00 E t if

C1 , 2 , 3 = min [Ci

ieT(S 0)

and

C1 ,2 ,3 C1 p(Tlll00 0)

67

Theorem 3.4.3

At any node N(S) with a state having at most four

remaining untested LRUs, if test Tk such that Tk T has the

minimum cost among all tests which can be used at N(S), then

the branch generated by Tk dominates all branches which are

generated by any other test Tm such that Tm c T.

Proof

With reference to Figure A.5, depicting a search tree

for a four LRUs example, all tests which could be used at any

node in this tree are presented in Table A.3

Branches bI(S 0 ,SlS 2), b2 (S0 ,S3 ,S4), and b3 (S0 ,S5 ,S6)

emanated from the first node N(S0) by tests T1 01 0 , T11 0 0 , T1 0 01

respectively, let the costs of these branches be Cb 1(S 'SIS2),

SCb 2(S0 ,S3 ,S4), and Cb 3(SS 5,S6) respectively where all the

tests belong to set T

4
Cb (S0 'S11S2)=E Pi E. + C1 ,3 + (P2+P4) * min[C 4 'C2 'Cl,4'

1 i=l

C1 , 2] + (pl+P3) -min[Cl,C 3 ,C 1 ,4,C 1 , 2]

4
Cb2 S =iSi' P " E. + CI 2 + (pI+p 2) min[Cl'C2

b2 3'4 i=l 1 1 12 1P P2

CI C + (p 3 +p4 min[C 4 ,C 3 ,C, 3 ,CI 4]

4
Cb 3 6 i=i Pi Ei + C1,4 + (P 2 +P 3) min[C3VC 2 '

- CI,2,CI 3] + (pl+P 4) min[ClC 4 ,C1 2 ,C1 ,3]

So, if C 1 ,3 = min [Ci] , then
icT(S 0)

68

-4 CL)

- U)

'-4

C) 0
E-4

oo

E4

C)U
-4 -4

,i,

N Lni

7.7

69

TABLE A.3

TESTS WHICH COULD BE USED AT NODE S IN THE
4-LRUs EXAMPLE

S T(S)

1010 T 10 00 , Toolo, T10 01 , T10

0101 T 000 1 , T 01 00 , T 10 01 , T 1 10 0

1100 T 1 00 0 , Tol00 , T10 10 , T1 00 ,

0011 T 0 00 1 , Toolo, T101 0 , T1 00 ,

0110 T 001 0 , Toloo, T1 ,00 , T11
1001 T 1010

100000o, T0 001 , T11 00 , T10 10

1111 T 1 00 0 , T01 00 , Too1 0 , T0 001 , T1 ,00 , T1 01 0 , T11.0,

IA

70

C1 ,3 = min[CI,C2C 31C4,C1 ,21 C4 ,5] and branch b1 (S0 ,SlS 2)

dominates branch b2 (s0 ,s3 ,s4)

if C1 ,-3 + P2 - min[C 4 'C2 'CI,4'C1,2] + P4 - min[C 4 'C2 'CI,4'C1 ,2]

p Pl" min[(CI'C 3 'CI,4'CI,2] + P3 "in[C'C 3 'CI,4'CI,2]

< C1 ,2 + P2 " min[C 1 'C2 'Cl,3'C, 4] + p1 " min[CI'C2 'Cl,3'C1 ,4]

+ P 3 " min[C4 'C 3 'C 1 ,3'C 1 , 4] + P4 min [C 4 ,C 3 ,CI,3,C1 ,4]

or C1 ,3 + P2 " min[C 4 'Ci, 2] + P4 min[C 2 'Cl,2] + Pl " min[C 3 'C1,2]

+ P3 " min[ClC 1 ,2] <- C,2 + P2 " min[ClC 1 ,3] + p1 - min[C2 'CI, 3]

+ P3 " min[C4 'C 1 , 3] + P4 " min[C3'C 1 ,3]

or [C 1,3 < cost < C1 2] < C 1,2

which is satisfied only because CI, 3 = min [C]

isT(S 0)

which implies that this is the only condition required to

guarantee that branch b1 (S0 s1 1 S 2) dominates branch b2 (S0 S31S 4).

By the same procedure, it could be proved that branch

bI(S 0 ,SlS 2) dominates also branch b3 (S0 ,S5 ,S6) only if

C 1,3 min i
iT(S 0)

Branch bI(S 0 ,SIS 2) dominates br :h -,S if

C1 ,3 + P 2 - min(C 4 'Cl,4]
+ P 4 - min[C 2 'C1 ,4]

+ Pl min[C3'C 1 ,4]

.- * m in [C I <4- * mi4-n[
+ P3 1CC,4 C1 , 4 P 2 min[C 3 'Ci, 3] + P3 min[C2 'C 1 ,3

+ P1 " min[C 4 'CI 3] + P4 min [CICI,3]

4"13+P ,

*-WL M=-

71

or if IC1,3 < cost < C1 ,] < C1 4

which is satisfied only because C1, 3 < cost of any other test.

Therefore, the branch which is generated by test

T1010 where TI010 c r which has the minimum cost at node N(S0)

dominates any other branch generated by tests belong also to

set T.

Eventhough all the dominance rules are proved in

case of having five or six LRUs, they could be considered rea-

sonably as general cases. However, because of the dramatic

increase in the number of possible tests (2 (n
- l) - 1) in case

of having more than six LRUs, the proofs in these cases are

omitted here.

I

*1a

KTO

c APPENDIX b

C M A 1N P RCjR A A

C Toil~, 0',uit AP" uSES A Bf<ANCH AND) HCulND ALt30.-41Tt-tt T FINJ THE jP1IVAL
C SE~jULNCL. LF Tf STS utUII-ZU T(. LOCATL A M4ALFUNC1l~ut.L) UNIT IN A
C 5Y47EM' uF N LI-U'S

C INPUl
pC C.NTkCJL CAkL)S

C L)AIA CkD

C CUNTIkOL CARLUS (A)
C CULUMNS
C 1- *f.s.N***..NUM3LR OF LkUGS
C b-i 1 1)...~r~ Of TCSTS

C Ct)NTR)L CAR. (8-3?..(0NE- PEI-k EACH TEST)
C 1-10 IXX(1I.J)..TLST I DLSCFCJBED BY INC: N DITS (LACit HIT IS
C EPktSIENTIFO 3Y .J

C LAlA CAFLQS (A)...7F13.7
C CULU4iiS
C 1-10 , o....i-0 C)*.CCST OF TEST I

C UAtA C.ARDS (H)o..7F10.7
C CULUMNS
C 1-14) o s o a 9 *61 -70 a P(J)o.6.PRuIdAt3LLIrY CF F-AILUK~E OF- LRU J

ma FIL

C DATA CARDS (C)...7110
C CULUMNS,
C 1-10 oooooooooobl-73...oMH(J)..ST(0N)ARY ISLJLATLJN CUS7 GI- LktJ

C IPA1AMETEFCS
C N=NUM3k OF L.I<.U*
C M~tUI41Ek-OF TESTS
C P(J)=pkuBAt3IL.TY OF FAILURE UF Lok*U. J
C MH(J)=SECONUAkY ISOLATICN CO!,T
C -(Ii=C~j$T UF~ TEST I
C IS= NOo.E NUmt3ER
C IY(lS.J)=STATL OF NLJOL IS
C IXX(I 6.IvJ)= TEST UF MINIMJF' COST AT t3RANCH I FkLM NUDE IS
C IXXI(IS91,J)=CL-MPLE.VLNT CI- TEST LAX(IS919J)
C CA(IS*I)=CUST GF TEST OF MINIMUM CuST AT df ANCH I FkLk' tuJL I!S
C L(IS)=LEVEL OF NCL)L is
C ISS(IS)=PREVIOUS NODE TL NUDE IS
C K(IS)= NUP41ER LI- UNTESTE'D L.&'US AT NODE IS
C ALL(1S)=LD*Lk bCUND AT NOOL 15
C I,)(IS)eooeoIF 1O)(LS;)= ***NODE IS 1s DUM.4Y
C I NUEX (IS 91 = I ..i3HdANCH I FkOr4 NULOL IS COULLo UL uS!7)
C INoEXCIboI)=O o**o**bIRANLH- 1 FkLM NJi IS CUULD NLT bc USE.
C I-(1591)=VALUJE UF FJGUIL: OF MERIT TZ' BE USE) INRI AK~CtING kULES FOR~
C 8kANCH 1 AT NODE 1S
C iUPU(Is)l ...IFTm-E L)UMMY NODE IS IS UP.)ATLD9ZLP4; LIHLVlE

LJIMLNSIUN LYSI(9).Ckkd255),LYS2-('),L(1),JJP)L'.)
COJMMNN/ABC/ IXX (1 1 9255.9)
COMMON/~BC/CA(11.255)
CLMMuN/.JEF/IXX1(1I1,25599)
C LMtMLN/LMN/I V(I1 9)
CLMMUN/XYZ/IS5(11)
COMMUN/UV*/F(11 .255)

COMMN/Eitl/K(I I)f

iLLMMuN/JH1K/P(9)
COMMuj4/BAB/INqDEX(1I.255)
C4..MMU/KAL/AL6(I 1)
C r'MN/NAG/C (2 5b)
CCAMu.'S/ AN Z/PR, (9)
CCMMOY/ SLC/MH (9)0
CUI4.40N/ANA/CR (255)
CALL DATA(Ni4)

C AT THE FIRST NOE

NVMdEk I
NuDEIl
I SMAXZ 1

K(IS)=N
101AS)=O

C FIK~V UUBE BOUND Ua
4 ~ ~ O 162DoI J=1,N

I I Y(I S 9j)I
SLCC=oO
Dw 29I J=19N

29 SE CC =SE CL *P (J*M H J
SUMB=0.

* CFR(I)=C(I)
I TT=O
L00 31 J1, N

31 ITT= ITT +1XX(1I I*J)
Il-IITT.EC1lhO TO 32
CRR(1)=OeO

32 SUMI3=5.iM+ C.k I)

A 1

30 CONY INJE
CMAXZ =CRP '1)
DU 35 1=2*M
IF(CMAX 1-CRkd I))33. 35.35

33 ICMAXI=CRR(l)
35 CfONTINUE

SuM4LS UP.B-CMAX I
US =SUMC C+ SE CC

C FIND LOPLR BOUNU
CALL REXP(IS.N!4)
ALB(IS)=k(1)+SECC

C STUPPING TEST USING SECONDAkY ISOLATION
H SUM= o
DO 37 J=.Io

37 HSUM=HSUM*MH(J J
tF((R(IS)*SECCJ.LT*MSUM) GO TG 34

WRI TE(6b,36)
36 FURi4AT(///*5X,'USE THE t)ECONDA'v LiOLATION FOF ALL Lek*Ue$J

GO TO 2752
34 %RITLC6.859)I S,AL8(IS)
859 FJ-RMA(//.1OX.'I5~ .13.2X.$ALB(IS)=.FIO.3)

wRITL(6 .222)UB
222 FQRAT//IXUf='fFI0*3)
1000 CALL OOMINA(IS9N)

CALL FINZ)F(IS.N)
2030 CALL BRANCH(15,ICP1)

kR I TEt 16938 0)
383 F RMA T (/// 913 X I S.2 OX ,INUDE I iZ2SX,'1TE S T)

WRITE(b.3b1)IS,((IyIIS.j).j=1,NJ.(1XX(IS.1L.PT,J).J=1.N))

C FIND THQ TWU POSS ISL E STATL ' FPUM THE: MOST PR.UMI SING F.RANCH
Mk=1 S
KS1=3
KS2=0
DO 1 J=I.N
LYS1CJ) =Y CIs. @J)* IXX(IS, IUPT *
LVS2(J)=IYC1S.J)*lXAI(IS,10PT.J)
IF(LYSI(J)-1i g,4*9

4 KS1=K$SI*1
9 IF(LVS2(J)oE~o.) GO TO I

I'52=KS2i I
I CUNTINUJE

I S=I SMAX4 I
IF(KSI.EQ.I) GO TO 6
IF (KS2 9EQoI) GO TL' 8

C USE DUMM4Y NLD)i
WiRITE(69383) IS

383 FORMAT(//,5X,.NODE' ,2X.14,2X.'IS DUMMYO)

JUPD(IS)=
2 L(IS)=L(MR)+1

ISS(ZS)=MwR
C FINL) THE PAAMETERS LF THE TW~U NODES BR~ANCHED I-RCM THE$ DUMMY NOj)E

-(KS2.GT@K$X) GO TfU 7

DO 5aJ J=19N
500 I YCISvJ)=L YS2(J)

L(IS)=LCMRJ+2
4 KC S):I(62

ID(IS)QO-
ISS(IS)15-l
CALL REXP(1SN*M)
CALL LO~bERU(I S-1 9No IOPT)

* DO 600 J=19N
boo I Y(I SJ)=LYSI J)

K(I S)=KSl
ISSI IS)1[S-2
L(I SI=L(MP)+2
ID(IS)=
NODE=NC DL+3
ISMAX=ISMAX+3
CALL kEXP(lSN*M)
CALL LbWEfRB(JSN9 ZLPT?
GO TO-800

7 1S=15+1
DO 3 J1.*N

3IY(159J)=LYSI(J
L(IS hL(Mk)+2
K(I SJ=K5l
ID([S)3,
ISSI IS)=IS-1
CALL kEXP(ISqNNI)
CALL LO*EHB(1Sz-l.N*IU)PT)
I S=1 5+1
UU~ 400 J=1.N

400 LY(ISJ)=LVS2(j)
K(15)=KSZ
ISS(JS)=]S-2
LI IS)=L(MR)+2
ID(I6)=3
NODE=NLDL+3
I bMAXIl SM AX+:$
CALL kEXP(IS9N9M)
CALL LOWLRB(ISN, IOPi)
GUJ TLj 800

C FIND T~lL PAFkAMETERS OF THE NEW NL.DE
e DO 700 J=1dIN
703 IY(lStJ)=LYSI(J)

KI IS)=KSI
GO TU 13

b DL; 933 J=IVN
900 IYY 1~tj)=LYS2(J)

10 1SI)= Sd
10 I)

CALL REAP(IlSoNoM)
CALL LOVJERLI(I Sdv I0PT)
NULIOLNDULL+ 1
£ S$AX=L SMA)X+l

C SuPiIN, TEST USING StECCNL)ARY ISOLATION
830 SUP4PMH=0.

SUM.41-106
DL' 140 J=1,N
IFUlY(ISvJ).E0*.3) GO TC 140
SJP.AriSU'4PI1I+P(J)*P4H(J)
StJ.4H4Ml''4MH+H(J)

143 CUNTIN~

1(6 ULLbALB 13)-(I) US.PI-iSUMMH
IF(E3Lb-UB14000v1ofhI.68

4033 W6IL(t,'Y76)(1yIIS,J),J=1,N)

4 i FURM AT (///, I3)t,*LoSE ECLN DAY ISOLA TI1014 FOk UN TLS Ti: Z Lok vU.
2AT NL.):a,2Xq2011)

16 ~k I T E (61b 0)jL fl
870 F CRMAT (// 91 OX 8bLB=',2X 9Ft .3)

DO lu9 1=19ML
14b9 F CIS*I 13.

Go TU 167

3.43 CALL (NukA(IsN,MI
IF(K(15)-2)l0O,17291000

C LAbT NUL3E IN 7H. WANCH
172 SUMP3=0.

DO 173 J=19N
IF(IY(IS9J)*EO.0) GO TC 173
SUMP3=SUMP3+P (j)

173$ CONTINUE
C FIND THE ACTUAL EXPECTED COST OF THIS BRANCH

FIN=(:2UMP3)*CA(15, 1)
8L BALB(t IS)-R(IS)*BN
toR1TE(b .380)
WkATE(6.3 81)IS,((IY(IS.J).J=1.NJ.(IXX(IS*1.J).J=1,N))
wKITECS .838)LLt3

b38 FURMAT(//vI3X99bL8='9F10e3)
IF CbL8-Ub) 167,168 * I68

C tjG TO OTHER BRANCH OF THE UUMIMY NCUE TO AL)JUST Tt-E L~aEk 5JND

1714 IFCID(ISS(IS)).NE*1) GO TO 176
IF(1D(IS-1)ot Gll GO TO 17o
GO TU 177

178 1 S=ISS(,tI S)
GU Tu 167

176 IS=IS-1
GO TO 167

177 IS=IS-2
JUPLUt 1S)=I1
AL8CISJ=IiL3-R(1S41)
15= 15+1
CALL LOwEIR!(IS9N. JOPT)
GU TO 800

C FAIHUM THIS NUUL

Du 183 1=19M1
UIITE(69.iO)

333) FORMAT(//* 1:)X9FATHOM~ LAST NCIDr AND CANCEL LAST TtST)
IF(lOCISS(IS))-1)231.181.201

(;iu TUI 170

DL 18cl I1.9MI
18k F(IS-19I)=0.

15=15-2
GO TO 1 70

4- A FEASIB3LE SOLUTIO-4
175 U B= t3L t

Wk I TL b . 2 22) UB
IV kITE 6.* 3 92) N(UOE

J92 FURMAT(//.3Xs@ NUMaLk OF ACTIVa= NUDES IS191e)
NU.4JLR.=NUMLRLN I
I..= IbMA X

C bACKTACK
170 IF (L(IS).E~o0) GO TO 2c#9

If IL(I1S)*EG *I) GL TO 200
IF(ID(IS5)*EO.I) GO TO 201
IF(K(IS).tO.) GL TO 231
MI=(2**(K(15)-))-I
DL 202 1=1,MI GO1 0
IF(F(IS9I).NE.0)GoT 0

1232 CUNTINLJE
IFC(1SS(I15) .NL *I) GO TU 201
IF(JUPD(ISS(15,))-1)0b66201b666

01 15=1S-1
GO TO 170

200 If(ID(IS).*EG.*1I) GO T C 204
* 1IF(K((IS)9EtO.2) GL TO 2014

M1=(2**(K(IS)-1))-l
DO e05 I=1 9ml

t IFCF(IS9I).NE.*3o) GO TO 300

20 5 CCOINUE
204 1S1l
g.9st 00 206 1=1,1M

I F(F (1S ,1).*NE.) GU TU 30 0
206 CONTINUE

GU. TU 2752
300 ISMAX=IS

GO TO 2003
2752e WRITEL(6p39l)UB
391 FL3HMAT(///gbX*.THE OPTIMUM EXPLLTLD C05T IS F3)

WR I TE (6 .3 42) N(LOE
STOP
END

C SU BROU T I NE UDAT A

C PURPUS
C DATA 1S UhED TO FkEAD bOTH CONTdkCL ANU DATA CAktOS

SUFC~jTINE CATA(Norl)
CU-MIUN/ABC/IXX(11.25599)
COMM#ON/DEF/IXX I(I11.255.9)
L OM MUN/ANZ/PR (9)
CUP4MUNi/lvAG~/C(25b)

COMI40N/SEC /MH (9)
REAU (59190)N,

190 FORMAT (215)

*V R LTL(6.191)N.14
191FOMAT(1HI9//91x.'*NkWE.L OF L.k.U. I5',121OA9*tJr4bLr" UF TESTS
115 0.14)
WRITE(6,331)

301 iOMAT(///.bX.1 OlX*IXX(1. 1.i)
Du 3I04 1=19M
kLAD(Z. 302)(1XXiI#*I .J)vJ=I N)

302 FOIRMAT(1011)

%P77 FLRMATC5A.9I3*1Ox,101L)
334 CON TZIN~t

C FIND 1XX1(1I. IJ)
DL, 160 1=1 ow
oD 1t1 J=19N
IFIIXX(1I.J)*EO.1) GU TO 16.3

GL TOj 161
103 IXX1(1I.J)=o
161 CONTINUE
163 CONTINUL

WRITL(bi.195)
195 ILHMAT(IHI*//v2)XO(UST LF TEZ.T;50//)

DU 194 1=1.M
41 READ(.6300)C(i)

600) FURM9AT(7F10.7)

193 FLkMAT(l0X,*CCtpT UF TEST 4914*2X**IS,2X9FkOe7*/)
*I to 1 4 CONY INJE

VIRI TE.(6 o.196)
19b F URMAT (/// ip X J'1 913X P 0im15X o 0MHO

READ (5,192) (P(J)*J=1,N)

enIt -
MIL

I~o2 FON#4AT 7F 1 307
REA (596001) (MH J) -9J=I N)

60:)1 FORMAT (71 10)
00 197 J~l *N
WRlTEA6opl99)JvP(J)I*4(J)

199 I CkMAT(5X 9 29 5X*F 1097o5Xo I10)
197 CONTINUE

kE TUR N
END

C S U 8 kUU I IN F L U WE k

C PURPOSE
C LU*Ek8 IS U-SED TO FIND THE L(oV*C& L3CU AT NUL)L IS

SU~kLjUT INE LUwERB(ISoN, JUPT)
(.OMMUN/LMN/IY(II .9)
C OYMON/K AL /AL 8(1 1)
CujMMOf4/(,Hl/R(11I *ID(Ii)
CU.4f4N/XVZ/ESS(l £1
CCAM.4UN/tiI&C/CA(11.2b5)
(.OU'NUN/JrI/P(9)
C.(gAlgUN/ANZ/Pk. (9)
DU 499 J=1.t

499 Pk(jV=P(J)
151=ISS(IS)I
DU 43 J=1.N
PIF (i =Y 5 lo U ~ u4

4,3 CONTINUE
C SUMPI=S)U4 CF THL PRUBHLITY OF FAILUkt UF THE UNILSIL, Le~oUo AT THE
C PRt VI~US NUOL 71j NCOE IS

SUMP I= 0.
DO 44~ J1.tJ

4(4 !SUMPI=SutNPI*PR(J)
IU~I D(15)1)48.47,48

4? C1SS63.
GOU Tu 4bo

4b C1Sb=SUMPl*CA(1SI.IOJPT)

* 4b ALB(l!:)=A~3(lSl) -R(l St)+R(LqCS
G.Tu 49

*46. AL9(lt3)=ALB(ISI)-R(I-.A)*R(1S),ClSSbfdISI)
'i19 06W i T C(t 98',9) I S 9AL 8 IS)
859 FU & 4 A(/1I0 x.'15=13 2 X.A L t 3)= F 1 :o3)

kL TUkiN

SC SU R 0U 7 INE 6 kA NC H

PC * *4 * ** * * ** * * *4 *4 ***

C PURPU.SE
C FIND TatE BRANCH IOPT wITH MAXIMUM VALUE OF FtIS9I)

SUBkOUTINE BRANCH(15.ICPT)
CLUMMON/UVh/F(I11.255)
CUMMON/ENT/K(11)
M12(2**(K(IS)-1,))-l
FMAX=F(I 1 1
L)U 96-12*Ml
IF(FMAX-FfAS9I)) 95996,96

95 FMAX=F(IS*I)
9b CL'NTINUE

DO 94 I=19MI
IFlI-IISvI)oEO.FMAX) GU TO 97

94 CU#NT INJ L
97 AOPTIl

F(IS9I)=0
RETUR4N
LND

C S U BR U T I NE F IN DF

C PURPOSE
C FINDF IS USED TO FIND THE VALJES UF F(IS.1) Uf ALL LkANCtIIS I1I.MI
C AT NUDE IS SHICH WILL BE UbEU IN THIE LkAN'CH1N%. rULES

SU(JkUTINE FINDC(ISvN)
COt4AIN/AbC/IXX(1 1 t#9
4CUMt4ON/BUC/4CA(II 255)
CliMMON/Ulv */I-(I I *255b
(L3MMUN/LMN/IY (I .9)
COMA4UN/JHK(/P(9)
COAMO4~N/BAS/ INUEX (11 .255)
CLM.4UN/E.NT/K(ii)
Wk1TEL(ot 863)

6o3 FURMAT (///* lAX.'I '23X.' F (IS91)')
Mi =(2**(Ke(15 5-1))-i

C PPI=SUM OF THL PhOU. OF FAILURE OF ALL UN7TESTED L.F *Uo AT NJ:);- 1S
C PPk=SUM U THiE *ROb. CF FAILURE 01- ALL UNTLSTED L.5..Uo IF Ttfi
C TEzT IN BRANCH I PASSES
C PPr=PkGaAaILITY THAT Tilk TEST IN tUHANCt1 I WILL PASS

PP 1=3.
DU 90 J=19N
IF(IY(l5.J)oE~oO) (jC;TO 90

* 0 CUNTINUE
* DO 91 i=19MI
Hit-IN)EX(IS I)*E~o)) GO TO 93

DU 92 JI.9N
IXYY=iY(IS*J)*IXX(ISg12,J)
la-(IXYY.U~o.:) GL TO 92

4 PP2=PP2+P (J)
*92 CONTINUE

pp=pll2/PPI

Gu TO 864
9o4 F(IS*I)0.9)1FIS1
80,4 %RITC(698bI,(S)

- - ~ * i ~ 7:

1362 F~kMATC1OX.14,20X*F1O.4)
91 CONTINUE

RETURN

C S U8R U UT I NE R E XP

c PURP'OSE
C kEXP 15 US>ED TO FIND TI-L MINIMUM EXPECTED CUST TL- FINL MALFUNCTIONED
C LeK*U* FROM NCOE IS

SUBHUUTINL RLXP(IStNM)
CUMMGN/L.MN/IY(11.9)
COMJ4ON/GIII/H(1) * lOCI)
CUMPAUN/L NT/K(1 1)
COMMON/JI4K/P(9)
CCMMON/MAt../4(255)
CLMI4UN/ AN A/'Ck C 25 b)
CLMMWJN/ANZ/PN C9)
DU 41 J=1,N

If (IY(I So J EU.1 elI TO 4 1
PN(j)z1.

41 CUNT INUE
C P.41N1=THE. MINIMUM P4kOiABILITY OF FAILJRE AMONGa TtiI UNTE STED
C L.Pk.Uo AT NLJE IS
C gPM1N2=IL SECOND MINo P1.OUAFILITY UF FAILJkE AMONG THE~ UriTESTED
C LslI.Ue AT NL,.L IS

PMINI=Pk.(l I
00O 14 J=2.N
IF (Pk(J)-PMINI) 13.13.14

1.3 P-641NI =PR(i
14 LUNTINVc.

Du Io J=19N
IF(Pk(J)*FEO.PMIN1) GO TO 1?

16 CONTINUE
17 PN(J)lI.

PMLN2Pk(l)
DU 23 J=29N
IF(I-'R(J)-PMIN2) 19,19.20

*19 PMAN2Pk(J)
21 CUNTINUE

DO 599i 1=1 9M
5'V9 LR(I)=C(1I

DO 27 11JJ
CMAX=CR(1)
DO 24 J=2.M
IF(LM4AX-Ck(J) 23,24924

24) C:4AX=CF-(j)
4 4 CUNTANUE

DU 25 KZ=IM
* .j IF(CkCKL).EG.(t4Ax) GO TO 26

*2b CONTINUE
2t# CR(KZI=O.
27 CONTINUE

C C-SU4=SUM OF TH-E (K(IS)-l) MIN114UM C~jbTS OF TE.STS
*1 CSUM=O.

DO 28 1=19M

-lo

2:R(IS)=(Pr4IN1I+PMI N2)*CSUr4

15 kETUkN
END)

C S** * * * * U B R U UT I N C DU M I N

*C PURPUSE
C 1)UPINA IS USLU TO FIND INDEX(ISeI) AT NODE IS FLI. ALL PUsSS16LE

*C dkANCHLS
SUBROUTINE DOMINA(ISetN)

C IF~ INDLX(IS*I)=0 oo.BFANCH I IS DUMINATL) BY ANEUTHLk LkANC- WHICH
C ITS INDJEX EQUALS 1

D IMENS I iIS P T 1(255)9P7 2 (2 55) ,PT (255) *KSS I (Z55) .S (2b55)oCA A(255)
DIt46NSION IYSSIC'%). IYSS2(9)*PAA(,0)
COMMON/AbC/IXX(11 ,25!b.9)
COMMUN/BHC/CA(11I 255)
CCMMUN/01F/ IXXLI(1 1 9255.9)

CUMMuN/ LtT/IK (1 1
COMlMONd/JH'(/P(9)
CUM,4UN/BAb/INDLX(11,255)
MI = t2* * tK (15)J- I I-

PTI11)=0.
PT2(1)=O.
KSSI (I).=D
I'5S2(I)=C
00 51 J=I.N
IYSSI(J)1IY(IS.J)*IXX(ISqI ,J)

IF (I YSSI (J I.EQ.) CPU TO052
KSSI H)=KSSI(I)*
PT1(I)=PT1(IJ.P(J)

52 IF (YSS2(J)EJ.3) tL TL, 51
KS$2(I)z=S(I)+i
Przg I)=PT2(I)+P(j)

51 CONTINUE

54 10T(ZI)=PTI II)
GU TO 50

55 PT (I j=PT2(I)
50 CUNTINUE

DO 60 1=19M1
60 CAA(I)=CA(I-SoI

(L 1-IND MIIMUM CCST
CAAMI;4=CAA(1)
DO 82 I=29MI
IF((..AA(I)-CAAMlN)61.61 .62

61 CAAMIN=CAA(I)
o2 CONTINUE

O 63 11,oMl
IF(CAAC I)oEU.CAAMIN) Gu TO 64

lb3 CONTINUE
f4 CA11ICAACII

CAA(I)= 103303.
IAAIl
DO 65 1=2.M1
IF(CAA(1)-C22)b6b,05

436 C22=CAA(I?
65 CUNT1I4UE

Vu 73 J1.ON
PAA(J)=P1 J
IF(IY(iS*J).EQ.1) GU TU 70
PAA(J)1I.

71 CUNTINUE
PAAMIN=PAA(1)
D~J 7.3 J=2*N
IF (iAA(J)-PAAMIN) 7k#.72973

72 PAAMIN=PAA(J)
71 CONTINUE

C CH1LCI(IF THE BkANCH %uITt4 MIfNIMUM CLST UF TEST DGMINATL5 ALL OTHiER
C bkANChLS Ok NGT

IF(CALL-PAAP4IN*C22)7*,74,75
74 DL 7b 11mI
To INDLA(1S.I)=0

GU TO 83
75 IF(KSSI (AA)-KSS2(IAA)) 77978,77
77 DO) 79 I=1,t41

81 INOEX(1S.I)3:
GU TU 79

82 INOELX(Ispt1=1
79 CONTINUWE

GL. TO 8 3
76 DL 83 L.1.MI

IF(KShI (1)-KSS2(1 1)84.85.84

eb I NULX (IS & I =
.C~ TO 83

87 JNiOLxCIS I)=I
GL TOJ 83

85 IF(Kt1S)-4)88v89*8r3
ee KNOLX(IS9l)=1

Gu Tu 83
89 INDEX(1591)=O
ei COPY 11NUE

WETUF(N
L ND

b, bUBROU T I NE G EN Bk A

C PURPUSE
C G.LNbRA IS USFD TL GENERATE ALL POSIBLE BR~ANCHES FP3!A NOQiL is
C 1tIHN FINU THE 7CbT W17H MIN COST IN EACrI d3RANCt1

SUBAUUT INti GLNEW? A I IS vNoM)
ULMaLN51ION IXYX(25b.9) ,KSI (255)#l*4MM(255)
CUM.MLN/ABCf/I X,(11.925599)
LOMMUNI BbC/ CAI II v2b5)
LOM'4UN/ULF / I XA II .255.9V)
CL44.'4N/L M4/ I y(I1t,9)
LCCMWON/ MAs/C(255)

CUPOMUN/ENT/K I I)
DU 103 I=19M4
K51 (I)=O
00 101 J1. N

IF(IXYXCA.J).t0..3) GO- TOi 101
KSZ(1)=KSLI ()*

131 CONTINUE
100 CUNTINUE

IJK=(K(15)/2)*2
IF(IJK*EU*.K(1S)) GU TO 113

DL 102 1=1,9W
IF(K51(1).LT.(K(IS)+1)/2)GO TO 104
Du. 103 J=1.N
1XYX(I1 J)1IY(LSqJ)*IXX1 (1 .1 J)

133 CO~NTINUE
134 DO 105 J=1,N

IF(IXYX(19J).EU.1) GO TO 138
105 CONTINUE
121 MMM(I)=O

GUi TO 132
108 L)O 10o J=1,N

Uf(1XYX(1.J)-IY(IS*J)) 1099100,109
106 CO147 ItdJE

%mO TO 121
109 MM44(I)=1
102 CONTINUE

GO TO 120
110 Dui 130 1=19M

122 DO 123 J=1.N
123 1XYXC1.J)=1Y(IS*J)eIxx1(I ,IJ)
124 DO 125 J=1.N

1F(IXYX(IvJ)oEU9I)GU T% 128
1~dto CJNTINUE
131 lAMl~

GU TU 130
128 DO 126 J=19K

If(IXYX(1,J)-IY(ISJ))1299126,129
Ikb CONTINUE

GO TO 131
1,29 MMM(11I=1
130 CONTINUE

6O TU 120)

1= 1
DJ III 11=104
IF(PV4(III oC 1.3) GO TO I1I1
KM 11
LLL=11+1
DU 112 L-LLLoM
19-t10MM(L)*ECo0)GL TO 11e-
DO 115 J=I1.
IF(IXYX(1Z.J)-IXYX(LPJ))112.11l59l12

*115 CUNTINJE
M!4M(LI=0
IF(C(Q%4)-C(L))I8,11R. 116

116 KM=L)C(M

I I X C(I S. I ,I =C (KM) KM

IXX(IS.1.J)=IX1 9MJ

GU Tu 119
5 Ixx1(IS.1,j) 0
119 CUNTINUE
I I CONTINUE

-~~J A. 4 -. - ---

IICUNTINLIE
GO TO 1600

1200 1WR ITE(69853)

DO1 1=1 6
If(MtMftII11)EQ.3) GO TU 1111
KM II
LLL=L1 4
DU) 1112 L=LLL.M
IF (MMM(L) 9EC90),.3 TO 1 112
DU 1115 J=1904
lf(IXYX(1Ii J)-ZXYX(L.J)) 1113.1115.1 113

1115 CONTINUE
1117 MMt4(L)= 3

1116 KM=L
1118 CA(IS* I)=C(KM4

GO TU 1700
1113 DL, 1114 JU=19N

IF(IXYX(11,JU)*1XYX(LJU)-I(1.j~j))111211141111..
1114 CONTINUE

GTO 1117
1700 DU) 1119 J=19N

IXIS* 1.J)=l XX(loKM, J)
IF (IX(1 S& I J) EJol)GO TO 1005
J XX1 (15.S 1 9 J)1
Gu TU 1119

1035 IXX1(1SI1,J)=0
1119 CLNTINUE
1112 CCJNT INJE

1111 CONTINUE
1630 M1=(2**(K(JS)I))-l

Wk ITEi(6 %851) I IXX(15 1 J 9J= I N)
851 f ORMAT (I0Xs 14 92UX911)
852 CONTINUE

PkETURIN
END

